Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Physiol ; 601(2): 335-353, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515167

RESUMEN

Layer V neurons in the primary motor cortex (M1) are important for motor skill learning. Since pretreatment of either CNQX or APV in rat M1 layer V impaired rotor rod learning, we analysed training-induced synaptic plasticity by whole-cell patch-clamp technique in acute brain slices. Rats trained for 1 day showed a decrease in small inhibitory postsynaptic current (mIPSC) frequency and an increase in the paired-pulse ratio of evoked IPSCs, suggesting a transient decrease in presynaptic GABA release in the early phase. Rats trained for 2 days showed an increase in miniature excitatory postsynaptic current (mEPSC) amplitudes/frequency and elevated AMPA/NMDA ratios, suggesting a long-term strengthening of AMPA receptor-mediated excitatory synapses. Importantly, rotor rod performance in trained rats was correlated with the mean mEPSC amplitude and the frequency obtained from that animal. In current-clamp analysis, 1-day-trained rats transiently decreased the current-induced firing rate, while 2-day-trained rats returned to pre-training levels, suggesting dynamic changes in intrinsic properties. Furthermore, western blot analysis of layer V detected decreased phosphorylation of Ser408-409 in GABAA receptor ß3 subunits in 1-day-trained rats, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in 2-day-trained rats. Finally, live-imaging analysis of Thy1-YFP transgenic mice showed that the training rapidly recruited a substantial number of spines for long-term plasticity in M1 layer V neurons. Taken together, these results indicate that motor training induces complex and diverse plasticity in M1 layer V pyramidal neurons. KEY POINTS: Here we examined motor training-induced synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. The training reduced presynaptic GABA release in the early phase, but strengthened AMPA receptor-mediated excitatory synapses in the later phase: acquired motor performance after training correlated with the strength of excitatory synapses rather than inhibitory synapses. As to the intrinsic property, the training transiently decreased the firing rate in the early phase, but returned to pre-training levels in the later phase. Western blot analysis detected decreased phosphorylation of Ser408-409 in GABAA receptor ß3 subunits in the acute phase, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in the later phase. Live-imaging analysis of Thy1-YFP transgenic mice showed rapid and long-term spine plasticity in M1 layer V neurons, suggesting training-induced increases in self-entropy per spine.


Asunto(s)
Corteza Motora , Receptores de GABA-A , Ratones , Ratas , Animales , Receptores de GABA-A/metabolismo , Receptores AMPA/metabolismo , Corteza Motora/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Plasticidad Neuronal/fisiología , Ácido gamma-Aminobutírico , Ratones Transgénicos
2.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830337

RESUMEN

The hippocampus is a primary area for contextual memory, known to process spatiotemporal information within a specific episode. Long-term strengthening of glutamatergic transmission is a mechanism of contextual learning in the dorsal cornu ammonis 1 (CA1) area of the hippocampus. CA1-specific immobilization or blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor delivery can impair learning performance, indicating a causal relationship between learning and receptor delivery into the synapse. Moreover, contextual learning also strengthens GABAA (gamma-aminobutyric acid) receptor-mediated inhibitory synapses onto CA1 neurons. Recently we revealed that strengthening of GABAA receptor-mediated inhibitory synapses preceded excitatory synaptic plasticity after contextual learning, resulting in a reduced synaptic excitatory/inhibitory (E/I) input balance that returned to pretraining levels within 10 min. The faster plasticity at inhibitory synapses may allow encoding a contextual memory and prevent cognitive dysfunction in various hippocampal pathologies. In this review, we focus on the dynamic changes of GABAA receptor mediated-synaptic currents after contextual learning and the intracellular mechanism underlying rapid inhibitory synaptic plasticity. In addition, we discuss that several pathologies, such as Alzheimer's disease, autism spectrum disorders and epilepsy are characterized by alterations in GABAA receptor trafficking, synaptic E/I imbalance and neuronal excitability.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Trastorno del Espectro Autista/metabolismo , Región CA1 Hipocampal/metabolismo , Epilepsia/metabolismo , Receptores AMPA/genética , Receptores de GABA-A/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Región CA1 Hipocampal/patología , Cognición/fisiología , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/patología , Regulación de la Expresión Génica , Humanos , Aprendizaje/fisiología , Plasticidad Neuronal/genética , Neuronas , Nootrópicos/uso terapéutico , Transporte de Proteínas , Receptores AMPA/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis , Transmisión Sináptica
3.
FASEB J ; 33(12): 14382-14393, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31689120

RESUMEN

Although contextual learning requires plasticity at both excitatory and inhibitory (E/I) synapses in cornu ammonis 1 (CA1) neurons, the temporal dynamics across the neuronal population are poorly understood. Using an inhibitory avoidance task, we analyzed the dynamic changes in learning-induced E/I synaptic plasticity. The training strengthened GABAA receptor-mediated synapses within 1 min, peaked at 10 min, and lasted for over 60 min. The intracellular loop (Ser408-409) of GABAA receptor ß3 subunit was also phosphorylated within 1 min of training. As the results of strengthening of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor-mediated synapses, CA1 pyramidal neurons exhibited broad diversity of E/I synaptic currents within 5 min. Moreover, presynaptic glutamate release probability at basal dendrites also increased within 5 min. To further quantify the diversified E/I synaptic currents, we calculated self-entropy (bit) for individual neurons. The neurons showed individual levels of the parameter, which rapidly increased within 1 min of training and maintained for over 60 min. These results suggest that learning-induced synaptic plasticity is critical immediately following encoding rather than during the retrieval phase of the learning. Understanding the temporal dynamics along with the quantification of synaptic diversity would be necessary to identify a failure point for learning-promoted plasticity in cognitive disorders.-Sakimoto, Y., Kida, H., Mitsushima, D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons.


Asunto(s)
Región CA1 Hipocampal/citología , Aprendizaje/fisiología , Neuronas/fisiología , Animales , Ácido Glutámico/metabolismo , Masculino , Potenciales de la Membrana , Plasticidad Neuronal/fisiología , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Potenciales Sinápticos/fisiología , Ácido gamma-Aminobutírico/metabolismo
4.
J Neurosci ; 38(49): 10411-10423, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30341178

RESUMEN

Polyunsaturated fatty acids (PUFAs) are essential for brain development and function. Increasing evidence has shown that an imbalance of PUFAs is associated with various human psychiatric disorders, including autism and schizophrenia. Fatty acid-binding proteins (FABPs), cellular chaperones of PUFAs, are involved in PUFA intracellular trafficking, signal transduction, and gene transcription. In this study, we show that FABP3 is strongly expressed in the GABAergic inhibitory interneurons of the male mouse anterior cingulate cortex (ACC), which is a component of the limbic cortex and is important for the coordination of cognitive and emotional behaviors. Interestingly, Fabp3 KO male mice show an increase in the expression of the gene encoding the GABA-synthesizing enzyme glutamic acid decarboxylase 67 (Gad67) in the ACC. In the ACC of Fabp3 KO mice, Gad67 promoter methylation and the binding of methyl-CpG binding protein 2 (MeCP2) and histone deacetylase 1 (HDAC1) to the Gad67 promoter are significantly decreased compared with those in WT mice. The abnormal cognitive and emotional behaviors of Fabp3 KO mice are restored by methionine administration. Notably, methionine administration normalizes Gad67 promoter methylation and its mRNA expression in the ACC of Fabp3 KO mice. These findings demonstrate that FABP3 is involved in the control of DNA methylation of the Gad67 promoter and activation of GABAergic neurons in the ACC, thus suggesting the importance of PUFA homeostasis in the ACC for cognitive and emotional behaviors.SIGNIFICANCE STATEMENT The ACC is important for emotional and cognitive processing. However, the mechanisms underlying its involvement in the control of behavioral responses are largely unknown. We show the following new observations: (1) FABP3, a PUFA cellular chaperone, is exclusively expressed in GABAergic interneurons in the ACC; (2) an increase in Gad67 expression is detected in the ACC of Fabp3 KO mice; (3) the Gad67 promoter is hypomethylated and the binding of transcriptional repressor complexes is decreased in the ACC of Fabp3 KO mice; and (4) elevated Gad67 expression and abnormal behaviors seen in Fabp3 KO mice are mostly recovered by methionine treatment. These suggest that FABP3 regulates GABA synthesis through transcriptional regulation of Gad67 in the ACC.


Asunto(s)
Metilación de ADN/fisiología , Proteína 3 de Unión a Ácidos Grasos/biosíntesis , Glutamato Descarboxilasa/metabolismo , Giro del Cíngulo/metabolismo , Regiones Promotoras Genéticas/fisiología , Animales , Línea Celular Tumoral , Proteína 3 de Unión a Ácidos Grasos/genética , Glutamato Descarboxilasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos
5.
Cereb Cortex ; 26(8): 3494-507, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27193420

RESUMEN

Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats-while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Ácido Glutámico/metabolismo , Masculino , Potenciales de la Membrana , Corteza Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Sinapsis/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
6.
Glia ; 64(1): 48-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26296243

RESUMEN

Fatty acid binding protein 7 (FABP7) expressed by astrocytes in developing and mature brains is involved in uptake and transportation of fatty acids, signal transduction, and gene transcription. Fabp7 knockout (Fabp7 KO) mice show behavioral phenotypes reminiscent of human neuropsychiatric disorders such as schizophrenia. However, direct evidence showing how FABP7 deficiency in astrocytes leads to altered brain function is lacking. Here, we examined neuronal dendritic morphology and synaptic plasticity in medial prefrontal cortex (mPFC) of Fabp7 KO mice and in primary cortical neuronal cultures. Golgi staining of cortical pyramidal neurons in Fabp7 KO mice revealed aberrant dendritic morphology and decreased spine density compared with those in wild-type (WT) mice. Aberrant dendritic morphology was also observed in primary cortical neurons co-cultured with FABP7-deficient astrocytes and neurons cultured in Fabp7 KO astrocyte-conditioned medium. Excitatory synapse number was decreased in mPFC of Fabp7 KO mice and in neurons co-cultured with Fabp7 KO astrocytes. Accordingly, whole-cell voltage-clamp recording in brain slices from pyramidal cells in the mPFC showed that both amplitude and frequency of action potential-independent miniature excitatory postsynaptic currents (mEPSCs) were decreased in Fabp7 KO mice. Moreover, transplantation of WT astrocytes into the mPFC of Fabp7 KO mice partially attenuated behavioral impairments. Collectively, these results suggest that astrocytic FABP7 is important for dendritic arbor growth, neuronal excitatory synapse formation, and synaptic transmission, and provide new insights linking FABP7, lipid homeostasis, and neuropsychiatric disorders, leading to novel therapeutic interventions.


Asunto(s)
Astrocitos/fisiología , Dendritas/fisiología , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Astrocitos/trasplante , Técnicas de Cocultivo , Potenciales Postsinápticos Excitadores/fisiología , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/fisiología , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/citología , Corteza Prefrontal/cirugía , Células Piramidales/citología
7.
Proc Natl Acad Sci U S A ; 108(30): 12503-8, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746893

RESUMEN

The hippocampus plays a central role in learning and memory. Although synaptic delivery of AMPA-type glutamate receptors (AMPARs) contributes to experience-dependent synaptic strengthening, its role in hippocampus-dependent learning remains elusive. By combining viral-mediated in vivo gene delivery with in vitro patch-clamp recordings, we found that the inhibitory avoidance task, a hippocampus-dependent contextual fear-learning paradigm, delivered GluR1-containing AMPARs into CA3-CA1 synapses of the dorsal hippocampus. To block the synaptic delivery of endogenous AMPARs, we expressed a fragment of the GluR1-cytoplasmic tail (the 14-aa GluR1 membrane-proximal region with two serines mutated to phospho-mimicking aspartates: MPR-DD). MPR-DD prevented learning-driven synaptic AMPAR delivery in CA1 neurons. Bilateral expression of MPR-DD in the CA1 region of the rat impaired inhibitory avoidance learning, indicating that synaptic GluR1 trafficking in the CA1 region of the hippocampus is required for encoding contextual fear memories. The fraction of CA1 neurons that underwent synaptic strengthening positively correlated with the performance in the inhibitory avoidance fear memory task. These data suggest that the robustness of a contextual memory depends on the number of hippocampal neurons that participate in the encoding of a memory trace.


Asunto(s)
Hipocampo/fisiología , Aprendizaje/fisiología , Receptores AMPA/fisiología , Animales , Reacción de Prevención/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Miedo/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/fisiología , Modelos Neurológicos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Receptores AMPA/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/fisiología
8.
Brain Sci ; 14(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38672030

RESUMEN

To determine the critical timing for learning and the associated synaptic plasticity, we analyzed developmental changes in learning together with training-induced plasticity. Rats were subjected to an inhibitory avoidance (IA) task prior to weaning. While IA training did not alter latency at postnatal day (PN) 16, there was a significant increase in latency from PN 17, indicating a critical day for IA learning between PN 16 and 17. One hour after training, acute hippocampal slices were prepared for whole-cell patch clamp analysis following the retrieval test. In the presence of tetrodotoxin (0.5 µM), miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) were sequentially recorded from the same CA1 neuron. Although no changes in the amplitude of mEPSCs or mIPSCs were observed at PN 16 and 21, significant increases in both excitatory and inhibitory currents were observed at PN 23, suggesting a specific critical day for training-induced plasticity between PN 21 and 23. Training also increased the diversity of postsynaptic currents at PN 23 but not at PN 16 and 21, demonstrating a critical day for training-induced increase in the information entropy of CA1 neurons. Finally, we analyzed the plasticity at entorhinal cortex layer III (ECIII)-CA1 or CA3-CA1 synapses for each individual rat. At either ECIII-CA1 or CA3-CA1 synapses, a significant correlation between mean α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartic acid (AMPA/NMDA) ratio and learning outcomes emerged at PN 23 at both synapses, demonstrating a critical timing for the direct link between AMPA receptor-mediated synaptic plasticity and learning efficacy. Here, we identified multiple critical periods with respect to training-induced synaptic plasticity and delineated developmental trajectories of learning mechanisms at hippocampal CA1 synapses.

9.
Brain Sci ; 14(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38391751

RESUMEN

The hippocampus is known to play an important role in memory by processing spatiotemporal information of episodic experiences. By recording synchronized multiple-unit firing events (ripple firings with 300 Hz-10 kHz) of hippocampal CA1 neurons in freely moving rats, we previously found an episode-dependent diversity in the waveform of ripple firings. In the present study, we hypothesized that changes in the diversity would depend on the type of episode experienced. If this hypothesis holds, we can identify the ripple waveforms associated with each episode. Thus, we first attempted to classify the ripple firings measured from rats into five categories: those experiencing any of the four episodes and those before experiencing any of the four episodes. In this paper, we construct a convolutional neural network (CNN) to classify the current stocks of ripple firings into these five categories and demonstrate that the CNN can successfully classify the ripple firings. We subsequently indicate partial ripple waveforms that the CNN focuses on for classification by applying gradient-weighted class activation mapping (Grad-CAM) to the CNN. The method of t-distributed stochastic neighbor embedding (t-SNE) maps ripple waveforms into a two-dimensional feature space. Analyzing the distribution of partial waveforms extracted by Grad-CAM in a t-SNE feature space suggests that the partial waveforms may be representative of each category.

10.
PLoS Genet ; 6(1): e1000820, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20107598

RESUMEN

Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Histona Acetiltransferasas/genética , Proteínas del Tejido Nervioso/genética , Unión Proteica , Proteínas de Unión al ARN , Tubulina (Proteína)/genética
11.
Sci Rep ; 12(1): 7199, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504922

RESUMEN

Postnatal development of hippocampal function has been reported in many mammalian species, including humans. To obtain synaptic evidence, we analyzed developmental changes in plasticity after an inhibitory avoidance task in rats. Learning performance was low in infants (postnatal 2 weeks) but clearly improved from the juvenile period (3-4 weeks) to adulthood (8 weeks). One hour after the training, we prepared brain slices and sequentially recorded miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) from the same hippocampal CA1 neuron. Although the training failed to affect the amplitude of either mEPSCs or mIPSCs at 2 weeks, it increased mEPSC, but not mIPSC, amplitude at 3 weeks. At 4 weeks, the training had increased the amplitude of both mEPSCs and mIPSCs, whereas mIPSC, but not mEPSC, amplitude was increased at 8 weeks. Because early-life physiological functions can affect performance, we also evaluated sensory-motor functions together with emotional state and found adequate sensory/motor functions from infancy to adulthood. Moreover, by analyzing performance of rats in multiple hippocampal-dependent tasks, we found that the developmental changes in the performance are task dependent. Taken together, these findings delineate a critical period for learning and plastic changes at hippocampal CA1 synapses.


Asunto(s)
Plásticos , Células Piramidales , Adulto , Animales , Hipocampo/fisiología , Humanos , Aprendizaje , Mamíferos , Células Piramidales/fisiología , Ratas , Sinapsis/fisiología
12.
Brain Sci ; 11(2)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672867

RESUMEN

Adolescence is the critical postnatal stage for the action of androgen in multiple brain regions. Androgens can regulate the learning/memory functions in the brain. It is known that the inhibitory avoidance test can evaluate emotional memory and is believed to be dependent largely on the amygdala and hippocampus. However, the effects of androgen on inhibitory avoidance memory have never been reported in adolescent male rats. In the present study, the effects of androgen on inhibitory avoidance memory and on androgen receptor (AR)-immunoreactivity in the amygdala and hippocampus were studied using behavioral analysis, Western blotting and immunohistochemistry in sham-operated, orchiectomized, orchiectomized + testosterone or orchiectomized + dihydrotestosterone-administered male adolescent rats. Orchiectomized rats showed significantly reduced time spent in the illuminated box after 30 min (test 1) or 24 h (test 2) of electrical foot-shock (training) and reduced AR-immunoreactivity in amygdala/hippocampal cornu Ammonis (CA1) in comparison to those in sham-operated rats. Treatment of orchiectomized rats with either non-aromatizable dihydrotestosterone or aromatizable testosterone were successfully reinstated these effects. Application of flutamide (AR-antagonist) in intact adolescent rats exhibited identical changes to those in orchiectomized rats. These suggest that androgens enhance the inhibitory avoidance memory plausibly by binding with AR in the amygdala and hippocampus.

13.
J Neurosci ; 29(12): 3808-15, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-19321777

RESUMEN

Extracellular acetylcholine (ACh) levels in the dorsal hippocampus increases during learning or exploration, exhibiting a sex-specific 24 h release profile. To examine the activational effect of gonadal steroid hormones on the sex-specific ACh levels and its correlation with spontaneous locomotor activity, we observed these parameters simultaneously for 24 h. Gonadectomy severely attenuated the ACh levels, whereas the testosterone replacement in gonadectomized males or 17beta-estradiol replacement in gonadectomized females successfully restored the levels. 17beta-Estradiol-priming in gonadectomized males could not restore the ACh levels, and testosterone replacement in gonadectomized females failed to raise ACh levels to those seen in testosterone-primed gonadectomized males, revealing a sex-specific activational effect. Spontaneous locomotor activity was not changed in males by gonadectomy or the replacement of gonadal steroids, but 17beta-estradiol enhanced the activity in gonadectomized females. Gonadectomy severely reduced the correlation between ACh release and activity levels, but the testosterone replacement in gonadectomized males or 17beta-estradiol replacement in gonadectomized females successfully restored it. To further analyze the sex-specific effect of gonadal steroids, we examined the organizational effect of gonadal steroids on the ACh release in female rats. Neonatal testosterone or 17beta-estradiol treatment not only increased the ACh levels but also altered them to resemble male-specific ACh release properties without affecting levels of spontaneous locomotor activity. We conclude that the activational effects of gonadal steroids maintaining the ACh levels and the high correlation with spontaneous locomotor activity are sex-specific, and that the organizational effects of gonadal steroids suggest estrogen receptor-mediated masculinization of the septo-hippocampal cholinergic system.


Asunto(s)
Acetilcolina/metabolismo , Estradiol/farmacología , Hormonas Gonadales/farmacología , Hipocampo/efectos de los fármacos , Actividad Motora , Testosterona/farmacología , Animales , Animales Recién Nacidos , Espacio Extracelular/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Orquiectomía , Ovariectomía , Ratas , Diferenciación Sexual , Factores Sexuales
14.
Neuroendocrinology ; 91(1): 41-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19923781

RESUMEN

Orexin A/hypocretin-1 inhibits pulsatile luteinizing hormone (LH) secretion in female rats. In this study, we investigated whether this inhibition was tied to the fasting state, as suggested by our previous study. We first examined whether orexin A inhibited pulsatile LH secretion when food was available ad libitumduring blood sampling. Next, we investigated the effect of intravenous administration of glucose (400 mg/kg) or lactic acid (negative control; 400 mg/kg) on orexin A-induced inhibition of pulsatile LH secretion. We found that orexin A did not affect pulsatile LH secretion in the presence of food, although it increased feeding behavior. Injection of orexin A significantly inhibited pulsatile LH secretion when food was withheld during blood sampling (p < 0.05); this inhibitory effect was rapidly reversed by intravenous injection of glucose but not lactic acid. Because orexin A did not seem to affect pulsatile LH secretion when food was available ad libitum, we speculate that orexin A has an effect on LH secretion when orexin A-induced hunger is accompanied by stress, such as the absence of food. Furthermore, glucose as well as food may act as a satiety factor in gonadotropin-releasing hormone pulse generation.


Asunto(s)
Ayuno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hormona Luteinizante/metabolismo , Neuropéptidos/metabolismo , Animales , Ayuno/sangre , Conducta Alimentaria/fisiología , Femenino , Glucosa/metabolismo , Ácido Láctico/metabolismo , Hormona Luteinizante/sangre , Orexinas , Periodicidad , Ratas , Ratas Wistar , Respuesta de Saciedad/fisiología , Estrés Psicológico/sangre , Estrés Psicológico/metabolismo , Factores de Tiempo
15.
Psychopharmacology (Berl) ; 237(3): 639-654, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31912190

RESUMEN

RATIONALE: Control of reward-seeking behavior under conditions of punishment is an important function for survival. OBJECTIVES AND METHODS: We designed a task in which rats could choose to either press a lever and obtain a food pellet accompanied by a footshock or refrain from pressing the lever to avoid footshock, in response to tone presentation. In the task, footshock intensity steadily increased, and the task was terminated when the lever press probability reached < 25% (last intensity). Rats were trained until the last intensity was stable. Subsequently, we investigated the effects of the pharmacological inactivation of the ventromedial prefrontal cortex (vmPFC), lateral orbitofrontal cortex (lOFC), and basolateral amygdala (BLA) on task performance. RESULTS: Bilateral inactivation of the vmPFC, lOFC, and BLA did not alter lever press responses at the early stage of the task. The number of lever presses increased following vmPFC and BLA inactivation but decreased following lOFC inactivation during the later stage of the task. The last intensity was elevated by vmPFC or BLA inactivation but lowered by lOFC inactivation. Disconnection of the vmPFC-BLA pathway induced behavioral alterations that were similar to vmPFC or BLA inactivation. Inactivation of any regions did not alter footshock sensitivity and anxiety levels. CONCLUSIONS: Our results demonstrate a strong role of the vmPFC and BLA and their interactions in reward restraint to avoid punishment and a prominent role of the lOFC in reward-seeking under reward/punishment conflict situations.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Conflicto Psicológico , Toma de Decisiones/fisiología , Corteza Prefrontal/fisiología , Castigo/psicología , Recompensa , Animales , Electrochoque/efectos adversos , Masculino , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología
16.
Neuroscience ; 437: 184-195, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32360699

RESUMEN

Contextual learning requires the delivery of AMPA receptors to CA1 synapses in the dorsal hippocampus. However, proximodistal heterogeneity of pathway-specific plasticity remains unclear. Here, we examined the proximodistal heterogeneity in learning-induced plasticity at the CA1 synapses with inputs from the entorhinal cortex layer III (ECIII) or from CA3. We subjected male rats to an inhibitory avoidance task and prepared acute hippocampal slices for whole-cell patch clamp experiments, where we stimulated ECIII-CA1 or CA3-CA1 input fibers to analyze evoked excitatory postsynaptic currents (EPSCs). Compared to untrained controls, trained rats exhibited higher AMPA/NMDA current ratios at CA3-CA1 synapses of proximal and intermediate, but not distal CA1 neurons, which suggested that region-specific plasticity occurred after learning. Moreover, trained rats exhibited higher AMPA/NMDA current ratios at ECIII-CA1 synapses of intermediate and distal, but not proximal CA1 neurons. These findings suggested the presence of proximodistal heterogeneity in pathway-specific postsynaptic plasticity. Regarding presynaptic plasticity, training slightly, but significantly increased the paired-pulse ratios of CA3-CA1 synapses of proximal and intermediate, but not distal CA1 neurons. Moreover, trained rats exhibited higher paired-pulse ratios at ECIII-CA1 synapses of intermediate and distal, but not proximal CA1 neurons, which suggested region-specific presynaptic plasticity. Finally, learning was clearly prevented by the bilateral microinjection of a plasticity blocker in the proximal or intermediate, but not distal CA1 subfields, which suggested functional heterogeneity along the proximodistal axis. Understanding region- and pathway-specific plasticity at dorsal CA1 synapses could aid in controlling encoded memory.


Asunto(s)
Receptores AMPA , Sinapsis , Animales , Región CA1 Hipocampal/metabolismo , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Masculino , Plasticidad Neuronal , Técnicas de Placa-Clamp , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Sinapsis/metabolismo
17.
Neuroscience ; 440: 15-29, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32450298

RESUMEN

Androgen receptor (AR) is abundantly expressed in the preoptico-hypothalamic area, bed nucleus of stria terminalis, and medial amygdala of the brain where androgen plays an important role in regulating male sociosexual, emotional and aggressive behaviors. In addition to these brain regions, AR is also highly expressed in the hippocampus, suggesting that the hippocampus is another major target of androgenic modulation. It is known that androgen can modulate synaptic plasticity in the CA1 hippocampal subfield. However, to date, the effects of androgen on the intrinsic plasticity of hippocampal neurons have not been clearly elucidated. In this study, the effects of androgen on the expression of AR in the hippocampus and on the dynamics of intrinsic plasticity of CA1 pyramidal neurons were examined using immunohistochemistry, Western blotting and whole-cell current-clamp recording in unoperated, sham-operated, orchiectomized (OCX), OCX + testosterone (T) or OCX + dihydrotestosterone (DHT)-primed adolescent male rats. Orchiectomy significantly decreased AR-immunoreactivity, resting membrane potential, action potential numbers, afterhyperpolarization amplitude and membrane resistance, whereas it significantly increased action potential threshold and membrane capacitance. These effects were successfully reversed by treatment with either aromatizable androgen T or non-aromatizable androgen DHT. Furthermore, administration of the AR-antagonist flutamide in intact rats showed similar changes to those in OCX rats, suggesting that androgens affect the excitability of CA1 pyramidal neurons possibly by acting on the AR. Our current study potentially clarifies the role of androgen in enhancing the basal excitability of the CA1 pyramidal neurons, which may influence selective neuronal excitation/activation to modulate certain hippocampal functions.


Asunto(s)
Andrógenos , Hipocampo , Andrógenos/farmacología , Animales , Dihidrotestosterona/farmacología , Flutamida/farmacología , Hipocampo/metabolismo , Masculino , Células Piramidales/metabolismo , Ratas , Receptores Androgénicos/metabolismo
18.
Eur J Neurosci ; 30(12): 2379-86, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19968712

RESUMEN

Abstract Differences in male and female responses to pain are widely recognized in many species, including humans, but the cerebral mechanisms that generate these responses are unknown. Using the formalin test, we confirmed that proestrus female rats showed nociceptive behavior, modulated by estrogen that was distinct from male rats, particularly during the interphase period. We then explored the brain areas, which were involved in the female pattern of nociceptive behavior. We found that, after a formalin injection and at the time corresponding to the behavioral interphase, the number of phosphorylated cAMP response element-binding protein (pCREB)-immunoreactive neurons observed by immunocytochemistry increased in the dorsolateral division of the bed nucleus of the stria terminalis (BSTLD) in female but not male rats. There were no significant sex differences in pCREB expression following formalin in any region other than the BSTLD. The increased pCREB in female rats was eliminated after an ovariectomy and restored with 17beta-estradiol treatment. Neither an orchidectomy nor 17beta-estradiol treatment affected the pCREB response in male rats. The increase in pCREB expression in the BSTLD in female rats after formalin injection was confirmed with immunoblotting. To determine the role of CREB in the BSTLD, adenovirus-mediated expression of a dominant-negative form of CREB (mCREB) was carried out. The nociceptive behavior during interphase was significantly attenuated by injection of virus carrying mCREB into the BSTLD in female rats but not in male rats. These results suggest a novel role for CREB in the BSTLD as a modulator of the pain response in a female-specific, estrogen-dependent manner.


Asunto(s)
Conducta Animal/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas/fisiología , Dolor/fisiopatología , Núcleos Septales/fisiopatología , Caracteres Sexuales , Animales , Conducta Animal/efectos de los fármacos , Estradiol/farmacología , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Formaldehído , Masculino , Neuronas/efectos de los fármacos , Dolor/inducido químicamente , Manejo del Dolor , Fosforilación , Ratas , Ratas Wistar , Núcleos Septales/efectos de los fármacos , Transducción de Señal , Factores de Tiempo
19.
Neuroimmunomodulation ; 16(3): 185-90, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19246941

RESUMEN

OBJECTIVE: The aim of the present study was to investigate the possible role of the major histocompatibility complex locus in neurotransmitter systems in the mouse hippocampus following toluene exposure. METHODS: We compared the changes in toluene-induced extracellular amino acid neurotransmitter levels in the hippocampi of 2 strains of male congenic mice, C57BL/10 (H-2(b)) and B10.BR/Sg (H-2(k)). In vivo microdialysis was performed in each freely moving mouse after a single intraperitoneal injection of toluene (300 mg/kg), and neurotransmitters in the hippocampal microdialysates were measured using high-performance liquid chromatography. RESULTS: The basal extracelluar glutamate and glycine levels in the hippocampi of the C57BL mice were significantly higher than those in the B10.BR mice. However, the basal extracellular taurine levels in the hippocampi of the C57BL mice were significantly lower than those in the B10.BR mice. Although no changes in the glutamate levels were observed after toluene injection in either strain, the glycine levels increased significantly after toluene injection in the C57BL mice. On the other hand, significantly lower taurine levels were observed after toluene injection in both strains of mice. CONCLUSIONS: Our data demonstrate the existence of a relationship between H-2 haplotypes and hippocampal neurotransmitter levels in mice.


Asunto(s)
Aminoácidos/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Antígenos de Histocompatibilidad/genética , Neurotransmisores/metabolismo , Exposición Profesional/efectos adversos , Tolueno/toxicidad , Animales , Modelos Animales de Enfermedad , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Glicina/metabolismo , Haplotipos/genética , Hipocampo/fisiopatología , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Solventes/toxicidad , Especificidad de la Especie , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Taurina/metabolismo
20.
Inhal Toxicol ; 21(10): 828-36, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19653804

RESUMEN

In this present study, we aimed to investigate the extracellular glutamate level and memory function-related gene expression in the mouse olfactory bulb after exposure of the animals to nanoparticle-rich diesel exhaust (NRDE) with or without bacterial cell wall component. Lipoteichoic acid (LTA), a cell wall component derived from Staphylococcus aureus, was used to induce systemic inflammation. Male BALB/c mice were exposed to clean air (particle concentration, 4.58 microg/m(3)) or NRDE (148.86 microg/m(3)) 5 h per day on 5 consecutive days of the week for 4 wk with or without weekly intraperitoneal injection of LTA. We examined the extracellular glutamate levels in the olfactory bulb using in vivo microdialysis and high-performance liquid chromatography assay. Then, we collected the olfactory bulb to examine the expression of N-methyl-D-aspartate (NMDA) receptor subunits (NR1, NR2A, and NR2B) and calcium/calmodulin-dependent protein kinase (CaMK) IV and cyclic AMP response element binding protein (CREB)-1 using real-time reverse-transcription polymerase chain reaction (RT-PCR). NRDE and/or LTA caused significantly increased extracellular glutamate levels in the olfactory bulb of mice. Moreover, the exposure of mice to NRDE upregulates NR1, NR2A, NR2B, and CaMKIV mRNAs in the olfactory bulb, while LTA upregulates only NR2B and CREB1 mRNAs. These findings suggest that NRDE and LTA cause glutamate-induced neurotoxicity separately and accompanied by changes in the expression of NMDA receptor subunits and related kinase and transcription factor in the mouse olfactory bulb. This is the first study to show the correlation between glutamate toxicity and memory function-related gene expressions in the mouse olfactory bulb following exposure to NRDE.


Asunto(s)
Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Nanopartículas/toxicidad , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Emisiones de Vehículos/toxicidad , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cromatografía Líquida de Alta Presión , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos BALB C , Microdiálisis , Tamaño de los Órganos/efectos de los fármacos , Tamaño de la Partícula , ARN Mensajero/biosíntesis , ARN Mensajero/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA