Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int Immunol ; 36(8): 405-412, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38564192

RESUMEN

Immunoglobulin G (IgG) molecules that bind antigens on the membrane of target cells spontaneously form hexameric rings, thus recruiting C1 to initiate the complement pathway. However, our previous report indicated that a mouse IgG mutant lacking the Cγ1 domain activates the pathway independently of antigen presence through its monomeric interaction with C1q via the CL domain, as well as Fc. In this study, we investigated the potential interaction between C1q and human CL isoforms. Quantitative single-molecule observations using high-speed atomic force microscopy revealed that human Cκ exhibited comparable C1q binding capabilities with its mouse counterpart, surpassing the Cλ types, which have a higher isoelectric point than the Cκ domains. Nuclear magnetic resonance and mutation experiments indicated that the human and mouse Cκ domains share a common primary binding site for C1q, centred on Glu194, a residue conserved in the Cκ domains but absent in the Cλ domains. Additionally, the Cγ1 domain, with its high isoelectric point, can cause electrostatic repulsion to the C1q head and impede the C1q-interaction adjustability of the Cκ domain in Fab. The removal of the Cγ1 domain is considered to eliminate these factors and thus promote Cκ interaction with C1q with the potential risk of uncontrolled activation of the complement pathway in vivo in the absence of antigen. However, this research underscores the presence of potential subsites in Fab for C1q binding, offering promising targets for antibody engineering to refine therapeutic antibody design.


Asunto(s)
Complemento C1q , Humanos , Animales , Complemento C1q/inmunología , Complemento C1q/metabolismo , Complemento C1q/química , Ratones , Sitios de Unión , Unión Proteica , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Inmunoglobulina G/química
2.
Nucleic Acids Res ; 51(D1): D368-D376, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36478084

RESUMEN

The Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics. Advances including GHz-class NMR instruments, national and trans-national NMR cyberinfrastructure, hybrid structural biology methods and machine learning are driving increases in the amount, type, and applications of NMR data in the biosciences. BMRB is a Core Archive and member of the World-wide Protein Data Bank (wwPDB).


Asunto(s)
Bases de Datos de Compuestos Químicos , Espectroscopía de Resonancia Magnética , Bases de Datos de Proteínas , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
3.
Cell ; 138(3): 537-48, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19665975

RESUMEN

Myosin VI is the only known molecular motor that moves toward the minus ends of actin filaments; thus, it plays unique roles in diverse cellular processes. The processive walking of myosin VI on actin filaments requires dimerization of the motor, but the protein can also function as a nonprocessive monomer. The molecular mechanism governing the monomer-dimer conversion is not clear. We report the high-resolution NMR structure of the cargo-free myosin VI cargo-binding domain (CBD) and show that it is a stable monomer in solution. The myosin VI CBD binds to a fragment of the clathrin-coated vesicle adaptor Dab2 with a high affinity, and the X-ray structure of the myosin VI CBD in complex with Dab2 reveals that the motor undergoes a cargo-binding-mediated dimerization. The cargo-binding-induced dimerization may represent a general paradigm for the regulation of processivity for myosin VI as well as other myosins, including myosin VII and myosin X.


Asunto(s)
Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Vesículas Cubiertas por Clatrina/metabolismo , Cristalografía por Rayos X , Dimerización , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Alineación de Secuencia
4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972439

RESUMEN

Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKa, whereas they are directly hydrogen bonded in the ß-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.


Asunto(s)
Proteínas Bacterianas/química , Pigmentos Biliares/química , Complejos de Proteína Captadores de Luz/química , Fotorreceptores Microbianos/química , Fitocromo/química , Protones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pigmentos Biliares/genética , Pigmentos Biliares/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Cianobacterias/química , Cianobacterias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Simulación de Dinámica Molecular , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Pirroles/química , Pirroles/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Acta Neuropathol ; 145(5): 573-595, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939875

RESUMEN

Lipid interaction with α-synuclein (αSyn) has been long implicated in the pathogenesis of Parkinson's disease (PD). However, it has not been fully determined which lipids are involved in the initiation of αSyn aggregation in PD. Here exploiting genetic understanding associating the loss-of-function mutation in Synaptojanin 1 (SYNJ1), a phosphoinositide phosphatase, with familial PD and analysis of postmortem PD brains, we identified a novel lipid molecule involved in the toxic conversion of αSyn and its relation to PD. We first established a SYNJ1 knockout cell model and found SYNJ1 depletion increases the accumulation of pathological αSyn. Lipidomic analysis revealed SYNJ1 depletion elevates the level of its substrate phosphatidylinositol-3,4,5-trisphosphate (PIP3). We then employed Caenorhabditis elegans model to examine the effect of SYNJ1 defect on the neurotoxicity of αSyn. Mutations in SYNJ1 accelerated the accumulation of αSyn aggregation and induced locomotory defects in the nematodes. These results indicate that functional loss of SYNJ1 promotes the pathological aggregation of αSyn via the dysregulation of its substrate PIP3, leading to the aggravation of αSyn-mediated neurodegeneration. Treatment of cultured cell line and primary neurons with PIP3 itself or with PIP3 phosphatase inhibitor resulted in intracellular formation of αSyn inclusions. Indeed, in vitro protein-lipid overlay assay validated that phosphoinositides, especially PIP3, strongly interact with αSyn. Furthermore, the aggregation assay revealed that PIP3 not only accelerates the fibrillation of αSyn, but also induces the formation of fibrils sharing conformational and biochemical characteristics similar to the fibrils amplified from the brains of PD patients. Notably, the immunohistochemical and lipidomic analyses on postmortem brain of patients with sporadic PD showed increased PIP3 level and its colocalization with αSyn. Taken together, PIP3 dysregulation promotes the pathological aggregation of αSyn and increases the risk of developing PD, and PIP3 represents a potent target for intervention in PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/patología , Lípidos , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
6.
J Pept Sci ; 28(8): e3406, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35043501

RESUMEN

A peptide containing a cysteinyl prolyl ester (CPE) moiety at the C-terminus (CPE peptide) was transformed into a diketopiperazine (DKP) thioester via an intramolecular N-S acyl shift reaction and was then used for peptide ligation. The difference in reactivity between the CPE peptide stereoisomers was examined. In reactions of the CPE peptides that contained L-Cys-L-Pro or D-Cys-D-Pro, the desired DKP thioester was formed at the preceding amino acid residue. On the other hand, in reactions of the CPE peptides that contained D-Cys-L-Pro or L-Cys-D-Pro, a thiolactone was formed at the C-terminal prolyl ester, and the ligation occurred at the C-terminal Pro residue. Using this reaction, it was possible to efficiently prepare a cyclic peptide.


Asunto(s)
Cisteína , Ésteres , Cisteína/química , Dicetopiperazinas , Dipéptidos/química , Péptidos/química
7.
Chemphyschem ; 22(14): 1505-1517, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33928740

RESUMEN

Linear polyubiquitin chains regulate diverse signaling proteins, in which the chains adopt various conformations to recognize different target proteins. Thus, the structural plasticity of the chains plays an important role in controlling the binding events. Herein, paramagnetic NMR spectroscopy is employed to explore the conformational space sampled by linear diubiquitin, a minimal unit of linear polyubiquitin, in its free state. Rigorous analysis of the data suggests that, regarding the relative positions of the ubiquitin units, particular regions of conformational space are preferentially sampled by the molecule. By combining these results with further data collected for charge-reversal derivatives of linear diubiquitin, structural insights into the factors underlying the binding events of linear diubiquitin are obtained.


Asunto(s)
Ubiquitinas/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos
8.
Proc Natl Acad Sci U S A ; 115(33): E7844-E7853, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30068603

RESUMEN

The plant gibberellin (GA) receptor GID1 shows sequence similarity to carboxylesterase (CXE). Here, we report the molecular evolution of GID1 from establishment to functionally diverse forms in eudicots. By introducing 18 mutagenized rice GID1s into a rice gid1 null mutant, we identified the amino acids crucial for GID1 activity in planta. We focused on two amino acids facing the C2/C3 positions of ent-gibberellane, not shared by lycophytes and euphyllophytes, and found that adjustment of these residues resulted in increased GID1 affinity toward GA4, new acceptance of GA1 and GA3 carrying C13-OH as bioactive ligands, and elimination of inactive GAs. These residues rendered the GA perception system more sophisticated. We conducted phylogenetic analysis of 169 GID1s from 66 plant species and found that, unlike other taxa, nearly all eudicots contain two types of GID1, named A- and B-type. Certain B-type GID1s showed a unique evolutionary characteristic of significantly higher nonsynonymous-to-synonymous divergence in the region determining GA4 affinity. Furthermore, these B-type GID1s were preferentially expressed in the roots of Arabidopsis, soybean, and lettuce and might be involved in root elongation without shoot elongation for adaptive growth under low-temperature stress. Based on these observations, we discuss the establishment and adaption of GID1s during plant evolution.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Evolución Molecular , Filogenia , Receptores de Superficie Celular/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Receptores de Superficie Celular/metabolismo , Especificidad de la Especie
9.
J Am Chem Soc ; 141(28): 11183-11195, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31199882

RESUMEN

Aromatic residues are located at structurally important sites of many proteins. Probing their interactions and dynamics can provide important functional insight but is challenging in large proteins. Here, we introduce approaches to characterize the dynamics of phenylalanine residues using 1H-detected fast magic-angle spinning (MAS) NMR combined with a tailored isotope-labeling scheme. Our approach yields isolated two-spin systems that are ideally suited for artifact-free dynamics measurements, and allows probing motions effectively without molecular weight limitations. The application to the TET2 enzyme assembly of ∼0.5 MDa size, the currently largest protein assigned by MAS NMR, provides insights into motions occurring on a wide range of time scales (picoseconds to milliseconds). We quantitatively probe ring-flip motions and show the temperature dependence by MAS NMR measurements down to 100 K. Interestingly, favorable line widths are observed down to 100 K, with potential implications for DNP NMR. Furthermore, we report the first 13C R1ρ MAS NMR relaxation-dispersion measurements and detect structural excursions occurring on a microsecond time scale in the entry pore to the catalytic chamber and at a trimer interface that was proposed as the exit pore. We show that the labeling scheme with deuteration at ca. 50 kHz MAS provides superior resolution compared to 100 kHz MAS experiments with protonated, uniformly 13C-labeled samples.


Asunto(s)
Aminopeptidasas/química , Resonancia Magnética Nuclear Biomolecular , Termodinámica , Aminopeptidasas/metabolismo , Isótopos de Carbono , Conformación Proteica , Protones , Pyrococcus horikoshii/enzimología
10.
J Biomol NMR ; 71(3): 119-127, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29934841

RESUMEN

In this perspective, we describe our efforts to innovate the current isotope-aided NMR methodology to investigate biologically important large proteins and protein complexes, for which only limited structural information could be obtained by conventional NMR approaches. At the present time, it is widely believed that only backbone amide and methyl signals are amenable for investigating such difficult targets. Therefore, our primary mission is to disseminate our novel knowledge within the biological NMR community; specifically, that any type of NMR signals other than methyl and amide groups can be obtained, even for quite large proteins, by optimizing the transverse relaxation properties by isotope labeling methods. The idea of "TROSY by isotope labeling" has been cultivated through our endeavors aiming to improve the original stereo-array isotope labeling (SAIL) method (Kainosho et al., Nature 440:52-57, 2006). The SAIL TROSY methods subsequently culminated in the successful observations of individual NMR signals for the side-chain aliphatic and aromatic 13CH groups in large proteins, as exemplified by the 82 kDa single domain protein, malate synthase G. Meanwhile, the expected role of NMR spectroscopy in the emerging integrative structural biology has been rapidly shifting, from structure determination to the acquisition of biologically relevant structural dynamics, which are poorly accessible by X-ray crystallography or cryo-electron microscopy. Therefore, the newly accessible NMR probes, in addition to the methyl and amide signals, will open up a new horizon for investigating difficult protein targets, such as membrane proteins and supramolecular complexes, by NMR spectroscopy. We briefly introduce our latest results, showing that the protons attached to 12C-atoms give profoundly narrow 1H-NMR signals even for large proteins, by isolating them from the other protons using the selective deuteration. The direct 1H observation methods exhibit the highest sensitivities, as compared to heteronuclear multidimensional spectroscopy, in which the 1H-signals are acquired via the spin-coupled 13C- and/or 15N-nuclei. Although the selective deuteration method was launched a half century ago, as the first milestone in the following prosperous history of isotope-aided NMR methods, our results strongly imply that the low-dimensional 1H-direct observation NMR methods should be revitalized in the coming era, featuring ultrahigh-field spectrometers beyond 1 GHz.


Asunto(s)
Isótopos de Carbono , Marcaje Isotópico , Resonancia Magnética Nuclear Biomolecular/métodos , Aminoácidos , Aminoácidos Aromáticos , Conformación Proteica
11.
J Biomol NMR ; 66(1): 37-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27566173

RESUMEN

Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14-Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D (13)C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically (13)C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14-Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m c14 and m c38). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for (13)C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m c38 isomerization, the (1)H-(13)C signals at the ß-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.


Asunto(s)
Aprotinina/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Disulfuros/química , Resonancia Magnética Nuclear Biomolecular , Algoritmos , Animales , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Bovinos , Isoenzimas , Modelos Químicos , Estructura Molecular , Proteínas Mutantes , Resonancia Magnética Nuclear Biomolecular/métodos , Temperatura , Termodinámica
12.
J Biomol NMR ; 65(2): 109-19, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27272978

RESUMEN

We recently developed a practical protocol for preparing proteins bearing stereo-selectively (13)C-methyl labeled leucines and valines, instead of the commonly used (13)C-methyl labeled precursors for these amino acids, by E. coli cellular expression. Using this protocol, proteins with any combinations of isotope-labeled or unlabeled Leu and Val residues were prepared, including some that could not be prepared by the precursor methods. However, there is still room for improvement in the labeling efficiencies for Val residues, using the methods with labeled precursors or Val itself. This is due to the fact that the biosynthesis of Val could not be sufficiently suppressed, even by the addition of large amounts of Val or its precursors. In this study, we completely solved this problem by using a mutant strain derived from E. coli BL21(DE3), in which the metabolic pathways depending on two enzymes, dihydroxy acid dehydratase and ß-isopropylmalate dehydrogenase, are completely aborted by deleting the ilvD and leuB genes, which respectively encode these enzymes. The ΔilvD E. coli mutant terminates the conversion from α,ß-dihydroxyisovalerate to α-ketoisovalerate, and the conversion from α,ß-dihydroxy-α-methylvalerate to α-keto-ß-methylvalerate, which produce the preceding precursors for Val and Ile, respectively. By the further deletion of the leuB gene, the conversion from Val to Leu was also fully terminated. Taking advantage of the double-deletion mutant, ΔilvDΔleuB E. coli BL21(DE3), an efficient and residue-selective labeling method with various isotope-labeled Ile, Leu, and Val residues was established.


Asunto(s)
Escherichia coli , Isoleucina/química , Marcaje Isotópico , Leucina/química , Espectroscopía de Resonancia Magnética , Proteínas/química , Valina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Genética , Isoleucina/metabolismo , Leucina/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/metabolismo , Valina/metabolismo
13.
J Biol Chem ; 288(21): 15303-17, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23553631

RESUMEN

Multimodal activation by various stimuli is a fundamental characteristic of TRP channels. We identified a fungal TRP channel, TRPGz, exhibiting activation by hyperosmolarity, temperature increase, cytosolic Ca(2+) elevation, membrane potential, and H2O2 application, and thus it is expected to represent a prototypic multimodal TRP channel. TRPGz possesses a cytosolic C-terminal domain (CTD), primarily composed of intrinsically disordered regions with some regulatory modules, a putative coiled-coil region and a basic residue cluster. The CTD oligomerization mediated by the coiled-coil region is required for the hyperosmotic and temperature increase activations but not for the tetrameric channel formation or other activation modalities. In contrast, the basic cluster is responsible for general channel inhibition, by binding to phosphatidylinositol phosphates. The crystal structure of the presumed coiled-coil region revealed a tetrameric assembly in an offset spiral rather than a canonical coiled-coil. This structure underlies the observed moderate oligomerization affinity enabling the dynamic assembly and disassembly of the CTD during channel functions, which are compatible with the multimodal regulation mediated by each functional module.


Asunto(s)
Proteínas Fúngicas/química , Gibberella/química , Canales Catiónicos TRPC/química , Calcio/química , Calcio/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Gibberella/genética , Gibberella/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
14.
Protein Expr Purif ; 95: 248-58, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24463428

RESUMEN

GRAS proteins belong to a plant specific protein family that participates in diverse and important functions in growth and development. GRAS proteins are typically composed of a variable N-terminal domain and highly conserved C-terminal GRAS domain. Despite the importance of the GRAS domain, little biochemical or structural analyses have been reported, mainly due to difficulties with purification of sufficient quality and quantity of protein. This study is focused on one of the most extensively studied GRAS proteins, the rice DELLA protein (SLR1), which is known to be involved in gibberellin (GA) signaling. Using a baculovirus-insect cell expression system we have achieved overproduction and purification of full-length SLR1. Limited proteolysis of the full-length SLR1 indicated that a region including the entire GRAS domain (SLR1(206-625)) is protease resistant. Based on those results, we have constructed an expression and purification system of the GRAS domain (SLR1(206-625)) in Escherichia coli. Several physicochemical assays have indicated that the folded structure of the GRAS domain is rich in secondary structural elements and that alanine substitutions for six cysteine residues improves protein folding without impairing function. Furthermore, by NMR spectroscopy we have observed direct interaction between the purified GRAS domain and the GA receptor GID1. Taken together, our purified preparation of the GRAS domain of SLR1 is suitable for further structural and functional studies that will contribute to precise understanding of the plant regulation mechanism through DELLA and GRAS proteins.


Asunto(s)
Oryza/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fragmentos de Péptidos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tripsina
15.
Nat Commun ; 15(1): 5779, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987535

RESUMEN

To the best of our knowledge, enzymes that catalyse intramolecular Diels-Alder ([4+2] cycloaddition) reactions are frequently reported in natural product biosynthesis; however, no native enzymes utilising Lewis acid catalysis have been reported. Verticilactam is a representative member of polycyclic macrolactams, presumably produced by spontaneous cycloaddition. We report that the intramolecular [4+2] cycloadditions can be significantly accelerated by ferredoxins (Fds), a class of small iron-sulphur (Fe-S) proteins. Through iron atom substitution by Lewis acidic gallium (Ga) iron and computational calculations, we confirm that the ubiquitous Fe-S cluster efficiently functions as Lewis acid to accelerate the tandem [4+2] cycloaddition and Michael addition reactions by lowering free energy barriers. Our work highlights Nature's ingenious strategy to generate complex molecule structures using the ubiquitous Fe-S protein. Furthermore, our study sheds light on the future design of Fd as a versatile Lewis acid catalyst for [4+2] cycloaddition reactions.


Asunto(s)
Productos Biológicos , Reacción de Cicloadición , Proteínas Hierro-Azufre , Ácidos de Lewis , Productos Biológicos/metabolismo , Productos Biológicos/química , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Ácidos de Lewis/química , Ácidos de Lewis/metabolismo , Catálisis , Hierro/química , Hierro/metabolismo , Lactamas/metabolismo , Lactamas/química , Biocatálisis
16.
Structure ; 32(3): 352-361.e5, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38194963

RESUMEN

Orexin neuropeptides have many physiological roles in the sleep-wake cycle, feeding behavior, reward demands, and stress responses by activating cognitive receptors, the orexin receptors (OX1R and OX2R), distributed in the brain. There are only subtle differences between OX1R and OX2R in the orthosteric site, which has hindered the rational development of subtype-selective antagonists. In this study, we utilized solution-state NMR to capture the structural plasticity of OX2R labeled with 13CH3-ε-methionine in complex with antagonists. Mutations in the orthosteric site allosterically affected the intracellular tip of TM6. Ligand exchange experiments with the subtype-selective EMPA and the nonselective suvorexant identified three methionine residues that were substantially perturbed. The NMR spectra suggested that the suvorexant-bound state exhibited more structural plasticity than the EMPA-bound state, which has not been foreseen from the close similarity of their crystal structures, providing insights into dynamic features to be considered in understanding the ligand recognition mode.


Asunto(s)
Metionina , Humanos , Orexinas , Ligandos , Receptores de Orexina/genética , Receptores de Orexina/química , Espectroscopía de Resonancia Magnética
17.
Sci Adv ; 10(24): eadn8386, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865454

RESUMEN

Certain cyanobacteria alter their photosynthetic light absorption between green and red, a phenomenon called complementary chromatic acclimation. The acclimation is regulated by a cyanobacteriochrome-class photosensor that reversibly photoconverts between green-absorbing (Pg) and red-absorbing (Pr) states. Here, we elucidated the structural basis of the green/red photocycle. In the Pg state, the bilin chromophore adopted the extended C15-Z,anti structure within a hydrophobic pocket. Upon photoconversion to the Pr state, the bilin is isomerized to the cyclic C15-E,syn structure, forming a water channel in the pocket. The solvation/desolvation of the bilin causes changes in the protonation state and the stability of π-conjugation at the B ring, leading to a large absorption shift. These results advance our understanding of the enormous spectral diversity of the phytochrome superfamily.


Asunto(s)
Luz , Cianobacterias/metabolismo , Cianobacterias/fisiología , Aclimatación , Fotosíntesis , Fitocromo/metabolismo , Fitocromo/química , Modelos Moleculares , Pigmentos Biliares/metabolismo , Pigmentos Biliares/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Luz Roja
18.
J Biomol NMR ; 57(3): 237-49, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24057411

RESUMEN

The (1)H-(13)C HMQC signals of the (13)CH3 moieties of Ile, Leu, and Val residues, in an otherwise deuterated background, exhibit narrow line-widths, and thus are useful for investigating the structures and dynamics of larger proteins. This approach, named methyl TROSY, is economical as compared to laborious methods using chemically synthesized site- and stereo-specifically isotope-labeled amino acids, such as stereo-array isotope labeling amino acids, since moderately priced, commercially available isotope-labeled α-keto acid precursors can be used to prepare the necessary protein samples. The Ile δ1-methyls can be selectively labeled, using isotope-labeled α-ketobutyrates as precursors. However, it is still difficult to prepare a residue-selectively Leu and Val labeled protein, since these residues share a common biosynthetic intermediate, α-ketoisovalerate. Another hindering drawback in using the α-ketoisovalerate precursor is the lack of stereo-selectivity for Leu and Val methyls. Here we present a differential labeling method for Leu and Val residues, using four kinds of stereo-specifically (13)CH3-labeled [U-(2)H;(15)N]-leucine and -valine, which can be efficiently incorporated into a protein using Escherichia coli cellular expression. The method allows the differential labeling of Leu and Val residues with any combination of stereo-specifically isotope-labeled prochiral methyls. Since relatively small amounts of labeled leucine and valine are required to prepare the NMR samples; i.e., 2 and 10 mg/100 mL of culture for leucine and valine, respectively, with sufficient isotope incorporation efficiency, this approach will be a good alternative to the precursor methods. The feasibility of the method is demonstrated for 82 kDa malate synthase G.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Marcaje Isotópico , Leucina/química , Valina/química , Aminoácidos/química , Isótopos de Carbono , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Hemiterpenos , Cetoácidos/química , Leucina/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Valina/metabolismo
19.
Methods Mol Biol ; 2646: 57-70, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36842106

RESUMEN

To understand flagella-driven motility of bacteria, it is important to understand the structure and dynamics of the flagellar motor machinery. We have conducted structural dynamics analyses using solution nuclear magnetic resonance (NMR) to elucidate the detailed functions of flagellar motor proteins. Here, we introduce the analysis of the FliG protein, which is a flagellar motor protein, focusing on the preparation method of the original stable isotope-labeled protein.


Asunto(s)
Proteínas Bacterianas , Flagelos , Proteínas Bacterianas/metabolismo , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Flagelos/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos
20.
Protein Sci ; 32(1): e4487, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321362

RESUMEN

ß2 -Microglobulin (ß2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured ß2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized ß2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced ß2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized ß2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured ß2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.


Asunto(s)
Amiloide , Microglobulina beta-2 , Concentración de Iones de Hidrógeno , Amiloide/química , Microglobulina beta-2/química , Disulfuros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA