Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 67(1): 156-169, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37870650

RESUMEN

AIMS/HYPOTHESIS: Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS: We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS: Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION: Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY: Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.


Asunto(s)
Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Islotes Pancreáticos/metabolismo
2.
Endocr J ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811192

RESUMEN

The beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in people with type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) have been suggested in several reports based on serological markers, imaging data, and histopathology associated with steatotic liver disease. However, evidence regarding their long-term effects is currently insufficient. In this retrospective observational study, 34 people with T2D and MASLD, treated with SGLT2 inhibitors, were examined by proton density fat fraction derived by magnetic resonance imaging (MRI-PDFF) and other clinical data before, one year after the treatment. Furthermore, 22 of 34 participants underwent MRI-PDFF five years after SGLT2 inhibitors were initiated. HbA1c decreased from 8.9 ± 1.8% to 7.8 ± 1.0% at 1 year (p = 0.006) and 8.0 ± 1.1% at 5 years (p = 0.122). Body weight and fat mass significantly reduced from baseline to 1 and 5 year(s), respectively. MRI-PDFF significantly decreased from 15.3 ± 7.8% at baseline to 11.9 ± 7.6% (p = 0.001) at 1 year and further decreased to 11.3 ± 5.7% (p = 0.013) at 5 years. Thus, a 5-year observation demonstrated that SGLT2 inhibitors have beneficial effects on liver steatosis in people with T2D and MASLD.

3.
Diabetologia ; 65(5): 811-828, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35243521

RESUMEN

AIMS/HYPOTHESIS: While pancreatic beta cells have been shown to originate from endocrine progenitors in ductal regions, it remains unclear precisely where beta cells emerge from and which transcripts define newborn beta cells. We therefore investigated characteristics of newborn beta cells extracted by a time-resolved reporter system. METHODS: We established a mouse model, 'Ins1-GFP; Timer', which provides spatial information during beta cell neogenesis with high temporal resolution. Single-cell RNA-sequencing (scRNA-seq) was performed on mouse beta cells sorted by fluorescent reporter to uncover transcriptomic profiles of newborn beta cells. scRNA-seq of human embryonic stem cell (hESC)-derived beta-like cells was also performed to compare newborn beta cell features between mouse and human. RESULTS: Fluorescence imaging of Ins1-GFP; Timer mouse pancreas successfully dissected newly generated beta cells as green fluorescence-dominant cells. This reporter system revealed that, as expected, some newborn beta cells arise close to the ducts (ßduct); unexpectedly, the others arise away from the ducts and adjacent to blood vessels (ßvessel). Single-cell transcriptomic analyses demonstrated five distinct populations among newborn beta cells, confirming spatial heterogeneity of beta cell neogenesis such as high probability of glucagon-positive ßduct, musculoaponeurotic fibrosarcoma oncogene family B (MafB)-positive ßduct and musculoaponeurotic fibrosarcoma oncogene family A (MafA)-positive ßvessel cells. Comparative analysis with scRNA-seq data of mouse newborn beta cells and hESC-derived beta-like cells uncovered transcriptional similarity between mouse and human beta cell neogenesis including microsomal glutathione S-transferase 1 (MGST1)- and synaptotagmin 13 (SYT13)-highly-expressing state. CONCLUSIONS/INTERPRETATION: The combination of time-resolved histological imaging with single-cell transcriptional mapping demonstrated novel features of spatial and transcriptional heterogeneity in beta cell neogenesis, which will lead to a better understanding of beta cell differentiation for future cell therapy. DATA AVAILABILITY: Raw and processed single-cell RNA-sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE155742.


Asunto(s)
Fibrosarcoma , Células Secretoras de Insulina , Transcriptoma , Animales , Diferenciación Celular/genética , Fibrosarcoma/metabolismo , Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , Conductos Pancreáticos , ARN
4.
Biochem Biophys Res Commun ; 612: 99-104, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35512463

RESUMEN

Autophagy is known to play an essential role in intracellular quality control through the degradation of damaged organelles and components. We previously demonstrated that ß-cell-specific autophagy deficient mice, which lack Atg7, exhibited impaired glucose tolerance, accompanied by the accumulation of sequestosome 1/p62 (hereafter referred to as p62). Whereas p62 has been reported to play essential roles in regulating cellular homeostasis in the liver and adipose tissue, we previously showed that ß-cell-specific p62 deficiency does not cause any apparent impairment in glucose metabolism. In the present study, we investigated the roles of p62 in ß cells under autophagy-deficient conditions, by simultaneously inactivating both Atg7 and p62 in a ß-cell specific manner. Whereas p62 accumulation was substantially reduced in the islets of Atg7 and p62 double-deficient mice, glucose tolerance and insulin secretion were comparable to Atg7 single-deficient mice. Taken together, these findings suggest that the p62 accumulation appears to have little effect on ß-cell function under conditions of autophagy inhibition.


Asunto(s)
Células Secretoras de Insulina , Animales , Autofagia , Proteína 7 Relacionada con la Autofagia/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
5.
Biochem Biophys Res Commun ; 611: 38-45, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35477091

RESUMEN

Autophagy is known to play a pivotal role in ß-cell function. While the lifelong inhibition of autophagy through Atg7 deletion in ß cells has been demonstrated to lead to impaired glucose tolerance together with ß-cell dysfunction, the temporal association between autophagy inhibition and ß-cell dysfunction remains unclear. To address such questions, inducible ß-cell-specific Atg7-knockout (ißAtg7KO) mice were generated, and autophagy inhibition was induced for two different time durations. Whereas 2 weeks of Atg7 ablation was sufficient to induce autophagy deficiency, confirmed by the accumulation of p62, ißAtg7KO mice exhibited normal glucose tolerance. In contrast, prolonged autophagy deficiency for 6 weeks resulted in glucose intolerance together with impaired insulin secretion. Direct mRNA sequencing and pathway analysis revealed that the gene set associated with insulin secretion was downregulated only after the 6-week prolonged autophagy inhibition. Furthermore, we identified a novel gene, Sprr1a, which was expressed at more than 50-fold higher levels during both the 2-week and 6-week autophagy inhibition. These findings suggest that autophagy insufficiency cumulatively leads to ß-cell failure after a certain interval, accompanied by stepwise alterations of gene expression patterns.


Asunto(s)
Intolerancia a la Glucosa , Células Secretoras de Insulina , Animales , Autofagia/fisiología , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados
6.
Endocr J ; 69(6): 681-687, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35067495

RESUMEN

The insufficient activity of insulin and the hyperactivity of glucagon are responsible for glucose intolerance in patients with type 2 diabetes. Whereas sodium-glucose cotransporter-2 (SGLT2) inhibitors improve blood glucose levels in patients with type 2 diabetes, their effects on the secretion profiles of glucagon and incretins remain unclear. Therefore, to investigate the effects of the SGLT2 inhibitor luseogliflozin on metabolic and endocrine profiles, 19 outpatients with type 2 diabetes were administered luseogliflozin for 12 weeks. It is of note that all subjects were treated only with diet and exercise therapy, and we were able to investigate the effects of luseogliflozin separately from the effects of other antidiabetic agents. Body weight, body fat mass, fat-free mass, and muscle mass were significantly reduced after 12 weeks of luseogliflozin administration. Glycosylated hemoglobin significantly decreased from the baseline of 8.2% ± 0.8% to 7.3% ± 0.7% (p < 0.0001). The meal tolerance test demonstrated that luseogliflozin significantly recovered glucose tolerance, accompanied by improved insulin resistance and ß-cell function, whereas glucagon secretion was unaffected. Furthermore, GLP-1 secretion was significantly increased after luseogliflozin administration. Thus, luseogliflozin improved metabolic and endocrine profiles accompanied by increased GLP-1 secretion in type 2 diabetic patients without any antidiabetic medication, but did not affect glucagon secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Incretinas , Glucemia/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Humanos , Hipoglucemiantes/uso terapéutico , Incretinas/metabolismo , Incretinas/uso terapéutico , Sorbitol/análogos & derivados
7.
Diabetologia ; 64(12): 2803-2816, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34498099

RESUMEN

AIMS/HYPOTHESIS: Pancreatic polypeptide (PP) cells, which secrete PP (encoded by the Ppy gene), are a minor population of pancreatic endocrine cells. Although it has been reported that the loss of beta cell identity might be associated with beta-to-PP cell-fate conversion, at present, little is known regarding the characteristics of Ppy-lineage cells. METHODS: We used Ppy-Cre driver mice and a PP-specific monoclonal antibody to investigate the association between Ppy-lineage cells and beta cells. The molecular profiles of endocrine cells were investigated by single-cell transcriptome analysis and the glucose responsiveness of beta cells was assessed by Ca2+ imaging. Diabetic conditions were experimentally induced in mice by either streptozotocin or diphtheria toxin. RESULTS: Ppy-lineage cells were found to contribute to the four major types of endocrine cells, including beta cells. Ppy-lineage beta cells are a minor subpopulation, accounting for 12-15% of total beta cells, and are mostly (81.2%) localised at the islet periphery. Unbiased single-cell analysis with a Ppy-lineage tracer demonstrated that beta cells are composed of seven clusters, which are categorised into two groups (i.e. Ppy-lineage and non-Ppy-lineage beta cells). These subpopulations of beta cells demonstrated distinct characteristics regarding their functionality and gene expression profiles. Ppy-lineage beta cells had a reduced glucose-stimulated Ca2+ signalling response and were increased in number in experimental diabetes models. CONCLUSIONS/INTERPRETATION: Our results indicate that an unexpected degree of beta cell heterogeneity is defined by Ppy gene activation, providing valuable insight into the homeostatic regulation of pancreatic islets and future therapeutic strategies against diabetes. DATA AVAILABILITY: The single-cell RNA sequence (scRNA-seq) analysis datasets generated in this study have been deposited in the Gene Expression Omnibus (GEO) under the accession number GSE166164 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166164 ).


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Estreptozocina/farmacología
8.
Biochem Biophys Res Commun ; 556: 134-141, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839409

RESUMEN

Oxidative stress is a deteriorating factor for pancreatic ß-cells under chronic hyperglycemia in diabetes. However, the molecular mechanism underlying the increase in oxidative stress in ß-cells under diabetic conditions remains unclear. We demonstrated previously that the selective alleviation of glucotoxicity ameliorated the downregulation of several ß-cell factors, including Cox6a2. Cox6a2 encodes a subunit of the respiratory chain complex IV in mitochondria. In this study, we analyzed the role of Cox6a2 in pancreatic ß-cell function and its pathophysiological significance in diabetes mellitus. Cox6a2-knockdown experiments in MIN6-CB4 cells indicated an increased production of reactive oxygen species as detected by CellROX Deep Red reagent using flow cytometry. In systemic Cox6a2-knockout mice, impaired glucose tolerance was observed under a high-fat high-sucrose diet. However, insulin resistance was reduced when compared with control littermates. This indicates a relative insufficiency of ß-cell function. To examine the transcriptional regulation of Cox6a2, ATAC-seq with islet DNA was performed and an open-chromatin area within the Cox6a2 enhancer region was detected. Reporter gene analysis using this area revealed that MafA directly regulates Cox6a2 expression. These findings suggest that the decreased expression of Cox6a2 increases the levels of reactive oxygen species and that Mafa is associated with decreased Cox6a2 expression under glucotoxic conditions.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteínas Musculares/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Células HEK293 , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Estrés Oxidativo , Transcripción Genética
9.
FASEB J ; 34(10): 13949-13958, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32844470

RESUMEN

Obesity is a health problem worldwide, and brown adipose tissue (BAT) is important for energy expenditure. Here, we explored the role of leukotriene A4 hydrolase (LTA4 H), a key enzyme in the synthesis of the lipid mediator leukotriene B4 (LTB4 ), in diet-induced obesity. LTA4 H-deficient (LTA4 H-KO) mice fed a high-fat diet (HFD) showed a lean phenotype, and bone-marrow transplantation studies revealed that LTA4 H-deficiency in non-hematopoietic cells was responsible for this lean phenotype. LTA4 H-KO mice exhibited greater energy expenditure, but similar food intake and fecal energy loss. LTA4 H-KO BAT showed higher expression of thermogenesis-related genes. In addition, the plasma thyroid-stimulating hormone and thyroid hormone concentrations, as well as HFD-induced catecholamine secretion, were higher in LTA4 H-KO mice. In contrast, LTB4 receptor (BLT1)-deficient mice did not show a lean phenotype, implying that the phenotype of LTA4 H-KO mice is independent of the LTB4 /BLT1 axis. These results indicate that LTA4 H mediates the diet-induced obesity by reducing catecholamine and thyroid hormone secretion.


Asunto(s)
Metabolismo Energético , Epóxido Hidrolasas/metabolismo , Obesidad/genética , Hormonas Tiroideas/sangre , Tirotropina/sangre , Tejido Adiposo Pardo/metabolismo , Animales , Catecolaminas/metabolismo , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Epóxido Hidrolasas/deficiencia , Epóxido Hidrolasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Fenotipo , Receptores de Leucotrieno B4/genética , Receptores de Leucotrieno B4/metabolismo , Termogénesis
10.
EMBO J ; 35(18): 1991-2007, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27511903

RESUMEN

Autophagy is a cellular process that degrades subcellular constituents, and is conserved from yeast to mammals. Although autophagy is believed to be essential for living cells, cells lacking Atg5 or Atg7 are healthy, suggesting that a non-canonical degradation pathway exists to compensate for the lack of autophagy. In this study, we show that the budding yeast Saccharomyces cerevisiae, which lacks Atg5, undergoes bulk protein degradation using Golgi-mediated structures to compensate for autophagy when treated with amphotericin B1, a polyene antifungal drug. We named this mechanism Golgi membrane-associated degradation (GOMED) pathway. This process is driven by the disruption of PI(4)P-dependent anterograde trafficking from the Golgi, and it also exists in Atg5-deficient mammalian cells. Biologically, when an Atg5-deficient ß-cell line and Atg7-deficient ß-cells were cultured in glucose-deprived medium, a disruption in the secretion of insulin granules from the Golgi occurred, and GOMED was induced to digest these (pro)insulin granules. In conclusion, GOMED is activated by the disruption of PI(4)P-dependent anterograde trafficking in autophagy-deficient yeast and mammalian cells.


Asunto(s)
Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Redes y Vías Metabólicas , Proteolisis , Saccharomyces cerevisiae/metabolismo , Anfotericina B/metabolismo , Animales , Antifúngicos/metabolismo , Proteína 5 Relacionada con la Autofagia/deficiencia , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Proinsulina/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
11.
Biochem Biophys Res Commun ; 521(1): 178-183, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31653346

RESUMEN

The emergence of bihormonal (BH) cells expressing insulin and glucagon has been reported under diabetic conditions in humans and mice. Whereas lineage tracing studies demonstrated that glucagon-producing α cells can be reprogrammed into BH cells, the underlying dynamics of the conversion process remain poorly understood. In the present study, we investigated the identities of pancreatic endocrine cells by genetic lineage tracing under diabetic conditions. When ß-cell ablation was induced by alloxan (ALX), a time-dependent increase in BH cells was subsequently observed. Lineage tracing experiments demonstrated that BH cells originate from α cells, but not from ß cells, in ALX-induced diabetic mice. Notably, supplemental insulin administration into diabetic mice resulted in a significant increase in α-cell-derived insulin-producing cells that did not express glucagon. Furthermore, lineage tracing in Ins2Akita diabetic mice demonstrated a significant induction of α-to-ß conversion. Thus, adult α cells have plasticity, which enables them to be reprogrammed into insulin-producing cells under diabetic conditions, and this can be modulated by supplemental insulin administration.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Glucemia/análisis , Insulina/administración & dosificación , Islotes Pancreáticos/citología , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Endocr J ; 67(11): 1119-1126, 2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-32669482

RESUMEN

Autophagy has been reported to play a crucial role in the maintenance of intracellular homeostasis, including in pancreatic beta cells. Rubicon, which interacts with the phosphoinositide 3-kinase (PI3K) complex, through autophagy-related 14 (ATG14), is among the few autophagy regulators that have been reported to inhibit autophagic flux to date and the deletion of Rubicon has been shown to increase autophagic flux. Based on previous results showing a causal relationship between autophagic dysfunction and pancreatic beta-cell impairment, we hypothesized that the deletion of Rubicon in pancreatic beta cells would improve cell integrity and confer protective effects. To test this hypothesis, we first confirmed that Rubicon knockdown (KD) promoted autophagic flux in ßTC3 pancreatic beta-cell line. Next, we generated pancreatic beta-cell-specific Rubicon knockout (ßKO) mice, by administering tamoxifen to Rubiconflox/flox:MIP-Cre-ERT mice, which showed normal glucose tolerance and insulin secretion under a normal chow diet, despite successful gene recombination. We also attempted to increase insulin resistance by feeding the mice with a high-fat diet for an additional 2 months to find little differences among the parameters evaluated for glucose metabolism. Finally, severe insulin resistance was induced with insulin receptor antagonist treatment, which resulted in comparable glucose homeostasis measurements between Rubicon ßKO and control mice. In summary, these results suggest that in pancreatic beta cells, Rubicon plays a limited role in the maintenance of systemic glucose homeostasis.


Asunto(s)
Autofagia/genética , Glucemia/metabolismo , Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Homeostasis , Ratones , Ratones Noqueados
13.
PLoS Genet ; 13(8): e1006950, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28854265

RESUMEN

Given the relevance of beige adipocytes in adult humans, a better understanding of the molecular circuits involved in beige adipocyte biogenesis has provided new insight into human brown adipocyte biology. Genetic mutations in SLC39A13/ZIP13, a member of zinc transporter family, are known to reduce adipose tissue mass in humans; however, the underlying mechanisms remains unknown. Here, we demonstrate that the Zip13-deficient mouse shows enhanced beige adipocyte biogenesis and energy expenditure, and shows ameliorated diet-induced obesity and insulin resistance. Both gain- and loss-of-function studies showed that an accumulation of the CCAAT/enhancer binding protein-ß (C/EBP-ß) protein, which cooperates with dominant transcriptional co-regulator PR domain containing 16 (PRDM16) to determine brown/beige adipocyte lineage, is essential for the enhanced adipocyte browning caused by the loss of ZIP13. Furthermore, ZIP13-mediated zinc transport is a prerequisite for degrading the C/EBP-ß protein to inhibit adipocyte browning. Thus, our data reveal an unexpected association between zinc homeostasis and beige adipocyte biogenesis, which may contribute significantly to the development of new therapies for obesity and metabolic syndrome.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/genética , Proteínas de Transporte de Catión/genética , Proteínas de Unión al ADN/genética , Obesidad/genética , Factores de Transcripción/genética , Adipocitos Beige/metabolismo , Adipogénesis/genética , Animales , Proteínas de Transporte de Catión/metabolismo , Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Dieta Alta en Grasa , Metabolismo Energético/genética , Humanos , Resistencia a la Insulina/genética , Ratones , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología , Factores de Transcripción/metabolismo , Zinc/metabolismo
14.
Biochem Biophys Res Commun ; 516(3): 686-692, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31253397

RESUMEN

Autophagy is a mechanism of bulk protein degradation that plays an important role in regulating homeostasis in many organisms. Among several methods for evaluating its activity, a fluorescent reporter GFP-LC3-RFP-LC3ΔG, in which GFP-LC3 is cleaved by ATG4 following autophagic induction and degraded in lysosome, has been used for monitoring autophagic flux, which is the amount of lysosomal protein degradation. In this study, we modified this reporter by exchanging GFP for pHluorin, which is more sensitive to low pH, and RFP to mCherry, to construct pHluorin-LC3-mCherry reporter. Following starvation or mTOR inhibition, the increase of autophagic flux was detected by a decrease of the fluorescent ratio of pHluorin to mCherry; our reporter was also more sensitive to autophagy-inducing stimuli than the previous one. To establish monitoring cells for mouse genome-wide screening of regulators of autophagic flux based on CRISPR/Cas9 system, after evaluating knockout efficiency of clones of Cas9-expressing MEFs, we co-expressed our reporter and confirmed that autophagic flux was impaired in gRNA-mediated knockout of canonical autophagy genes. Finally, we performed genome-wide gRNA screening for genes inhibiting starvation-mediated autophagic flux and identified previously reported genes such as Atgs. Thus, we have successfully established a system for screening of genes regulating autophagic flux with our pHluorin-LC3-mCherry reporter in mice.


Asunto(s)
Autofagia , Sistemas CRISPR-Cas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Ratones Noqueados , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteína Fluorescente Roja
15.
Biochem Biophys Res Commun ; 505(4): 1141-1147, 2018 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30318118

RESUMEN

Autophagy is considered as an evolutionarily conserved cellular catabolic process. Defective autophagy has been implicated in various human diseases, including cardiovascular diseases. Recently, we and others demonstrated that defective autophagy in vascular smooth muscle cells (SMCs) promotes the progression of atherosclerosis. In this study, we investigated the role of autophagy in SMCs on plaque instability in vivo. We generated mice with a defect atg7in which is an essential gene for autophagy, in SMCs by crossing Atg7f/f mice with transgelin (Tagln) Cre+/0 mice (Atg7cKO). Then, Atg7cKO and apolipoprotein E (apoe)-deficient (apoeKO) mice were crossed to generate Atg7cKO:apoeKO mice. To generate a mouse model of plaque instability, we conducted to form a tandem stenosis in the carotid artery of Atg7cKO:apoeKO mice and their controls (apoeKO mice) at the age of 10 weeks. At 5 weeks after surgery, the percentage of cross-sectional stenosis area in the operated common carotid artery of Atg7cKO:apoeKO mice was significantly higher than that in apoeKO mice. In addition, thrombus, which was not observed in apoeKO mice, was frequently found in Atg7cKO:apoeKO mice. Furthermore, the number of Berlin blue staining-positive areas, which indicated intraplaque hemorrhage, was significantly higher in Atg7cKO:apoeKO mice than in control apoeKO mice. Taken together, our data suggest that defective autophagy in SMCs enhances plaque instability and the risk of plaque rupture.


Asunto(s)
Autofagia , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/patología , Placa Aterosclerótica/patología , Estenosis Espinal/metabolismo , Estenosis Espinal/patología , Estenosis Espinal/cirugía
16.
Biochem Biophys Res Commun ; 496(2): 328-334, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29337057

RESUMEN

Autophagy in ß cells has been demonstrated to play a pivotal role in cellular homeostasis and the progression of glucose intolerance. Although autophagic activity is affected by metabolic stress both in vivo and in vitro, it remains unclear as to what extent the autophagic status in each ß cell is different from its neighboring cells. To address this question, GFP-LC3 reporter mice, which can visualize the autophagic status of each ß cell as green-fluorescent puncta, were crossed with obese diabetic db/db mice. Imaging of green-fluorescent puncta in the islets of GFP-LC3 mice revealed that ß cells are a heterogeneous population, as the density of GFP-LC3 puncta in each cell was variable. Furthermore, the variability was greater in GFP-LC3; db/db mice than in non-diabetic GFP-LC3; db/+ mice. Furthermore, when GFP-LC3 mice were treated with a low dose of S961, which antagonizes insulin signaling without inducing overt hyperglycemia, the number of ß cells with a high density of GFP puncta was increased, suggesting that insulin resistance affects autophagic status independently of glucose profiles. These results suggest that pancreatic ß cells under metabolic stress are heterogeneous regarding their autophagic status, which provides insights into the cellular dynamics of each ß cell rather than the whole ß-cell population.


Asunto(s)
Autofagia/efectos de los fármacos , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Péptidos/efectos de los fármacos , Receptor de Insulina/genética , Animales , Autofagia/genética , Recuento de Células , Células Cultivadas , Cruzamientos Genéticos , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/farmacología , Receptor de Insulina/antagonistas & inhibidores , Receptor de Insulina/metabolismo , Transducción de Señal , Análisis de la Célula Individual
17.
Endocr J ; 65(1): 83-89, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-28978813

RESUMEN

Recent studies have suggested that decreased pancreatic ß-cell function and mass are common features of patients with type 2 diabetes mellitus. Pancreatic ß-cell homeostasis is regulated by various types of signaling molecules and stress responses. Sequestosome 1/p62 (SQSTM1, hereafter referred to as p62) is a ubiquitin-binding adaptor protein involved in cell signaling, oxidative stress, and autophagy. Because p62 appears to play an important role in maintaining mitochondrial quality control, it is possible that the loss of p62 in pancreatic ß cells contributes to mitochondrial dysfunction, and thus leading to impaired glucose tolerance. In this study we investigated the physiological roles of p62 by inactivating p62 in a ß-cell specific manner. We found that firstly, rat insulin-2 promoter-Cre (RIP-Cre)-mediated p62 inactivation did not cause body weight gain, although ubiquitous inactivation of p62 was previously shown to result in severe obesity. Secondly, we found no gross structural disorganization of the islets of p62-deficient mice. Consistent with normal islet morphology, no impairment in glucose tolerance was observed in mice with RIP-Cre-mediated p62 deletion. These results suggest that p62 is dispensable for normal islet organization and ß-cell function.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteína Sequestosoma-1/metabolismo , Animales , Autofagia , Glucemia/análisis , Proliferación Celular , Cruzamientos Genéticos , Expresión Génica , Inmunohistoquímica , Insulina/sangre , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Masculino , Ratones Noqueados , Ratones Transgénicos , Especificidad de Órganos , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Proteína Sequestosoma-1/antagonistas & inhibidores , Proteína Sequestosoma-1/genética , Organismos Libres de Patógenos Específicos , Aumento de Peso
18.
Proc Natl Acad Sci U S A ; 112(9): 2888-93, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25695968

RESUMEN

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic ß cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total ß-cell mass, and the role of Gi-GPCRs in establishing ß-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates ß-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic ß cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal ß cells decreased ß-cell proliferation, reduced adult ß-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal ß-cell proliferation, increased adult ß-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult ß cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of ß-cell replication. These studies link Gi-GPCR signaling to ß-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase ß-cell mass in patients with diabetes.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Glucosa/genética , Glucosa/metabolismo , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Receptores Adrenérgicos alfa 2/genética
19.
Biochem Biophys Res Commun ; 483(1): 418-424, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28017717

RESUMEN

Pdx1, a ß-cell-specific transcription factor, has been shown to play a crucial role in maintaining ß-cell function through transactivation of ß-cell-related genes. In addition, it has been reported that the expression levels of Pdx1 are compromised under diabetic conditions in human and rodent models. We therefore aimed to clarify the possible beneficial role of Pdx1 against ß-cell failure and generated the transgenic mouse that expressed Pdx1 conditionally and specifically in ß cells (ßPdx1) and crossed these mice with Ins2Akita diabetic mice. Whereas Pdx1 mRNA levels were reduced in Ins2Akita mice compared with their non-diabetic littermates, the mRNA levels of Pdx1 were significantly recovered in the islets of ßPdx1; Ins2Akita mice. The ßPdx1; Ins2Akita mice exhibited significantly improved glucose tolerance, compared with control Ins2Akita littermates, accompanied by increased insulin secretion after glucose loading. Furthermore, histological examination demonstrated that ßPdx1; Ins2Akita mice had improved localization of SLC2A2 (GLUT2), and quantitative RT-PCR showed the recovered expression of Mafa and Gck mRNAs in the islets of ßPdx1; Ins2Akita mice. These findings suggest that the sustained expression of Pdx1 improves ß-cell failure in Ins2Akita mice, at least partially through the preserving expression of ß-cell-specific genes as well as improved localization of GLUT2.


Asunto(s)
Diabetes Mellitus Experimental/patología , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/patología , Transactivadores/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Intolerancia a la Glucosa/genética , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Proteínas de Homeodominio/genética , Insulina/genética , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones Transgénicos , Transporte de Proteínas , Transactivadores/genética
20.
J Biol Chem ; 290(12): 7647-57, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25645923

RESUMEN

The murine Mafa transcription factor is a key regulator of postnatal islet ß-cell activity, affecting insulin transcription, insulin secretion, and ß-cell mass. Human MAFA expression is also markedly decreased in islet ß-cells of type 2 diabetes mellitus (T2DM) patients. Moreover, levels are profoundly reduced in db/db islet ß-cells, a mouse model of T2DM. To examine the significance of this key islet ß-cell-enriched protein to glycemic control under diabetic conditions, we generated transgenic mice that conditionally and specifically produced Mafa in db/db islet ß-cells. Sustained expression of Mafa resulted in significantly lower plasma glucose levels, higher plasma insulin, and augmented islet ß-cell mass. In addition, there was increased expression of insulin, Slc2a2, and newly identified Mafa-regulated genes involved in reducing ß-cell stress, like Gsta1 and Gckr. Importantly, the levels of human GSTA1 were also compromised in T2DM islets. Collectively, these results illustrate how consequential the reduction in Mafa activity is to islet ß-cell function under pathophysiological conditions.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Islotes Pancreáticos/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Humanos , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA