Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34753820

RESUMEN

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.


Asunto(s)
Contaminación del Aire , Atmósfera/química , COVID-19/psicología , Gases de Efecto Invernadero , Modelos Teóricos , COVID-19/epidemiología , Dióxido de Carbono , Cambio Climático , Humanos , Metano , Óxidos de Nitrógeno , Ozono
2.
Proc Natl Acad Sci U S A ; 115(20): 5099-5104, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712822

RESUMEN

Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NO x ) and carbon monoxide (CO) for 2011-2015 using satellite and surface measurements. This observed slowdown in emission reductions is significantly different from the trend expected using US Environmental Protection Agency (EPA) bottom-up inventories and impedes compliance with local and federal agency air-quality goals. We find that the difference between observations and EPA's NO x emission estimates could be explained by: (i) growing relative contributions of industrial, area, and off-road sources, (ii) decreasing relative contributions of on-road gasoline, and (iii) slower than expected decreases in on-road diesel emissions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monóxido de Carbono/análisis , Monitoreo del Ambiente/normas , Óxidos de Nitrógeno/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Gasolina , Humanos , Estados Unidos
3.
Nat Commun ; 14(1): 1604, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959192

RESUMEN

Quantifying the coevolution of greenhouse gases and air quality pollutants can provide insight into underlying anthropogenic processes enabling predictions of their emission trajectories. Here, we classify the dynamics of historic emissions in terms of a modified Environmental Kuznets Curve (MEKC), which postulates the coevolution of fossil fuel CO2 (FFCO2) and NOx emissions as a function of macroeconomic development. The MEKC broadly captures the historic FFCO2-NOx dynamical regimes for countries including the US, China, and India as well as IPCC scenarios. Given these dynamics, we find the predictive skill of FFCO2 given NOx emissions constrained by satellite data is less than 2% error at one-year lags for many countries and less than 10% for 4-year lags. The proposed framework in conjunction with an increasing satellite constellation provides valuable guidance to near-term emission scenario development and evaluation at time-scales relevant to international assessments such as the Global Stocktake.

4.
Sci Adv ; 9(30): eadh2688, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37506199

RESUMEN

Global lockdown measures to prevent the spread of the coronavirus disease 2019 (COVID-19) led to air pollutant emission reductions. While the COVID-19 lockdown impacts on both trace gas and total particulate pollutants have been widely investigated, secondary aerosol formation from trace gases remains unclear. To that end, we quantify the COVID-19 lockdown impacts on NOx and SO2 emissions and sulfate-nitrate-ammonium aerosols using multiconstituent satellite data assimilation and model simulations. We find that anthropogenic emissions over major polluted regions were reduced by 19 to 25% for NOx and 14 to 20% for SO2 during April 2020. These emission reductions led to 8 to 21% decreases in sulfate and nitrate aerosols over highly polluted areas, corresponding to >34% of the observed aerosol optical depth declines and a global aerosol radiative forcing of +0.14 watts per square meter relative to business-as-usual scenario. These results point to the critical importance of secondary aerosol pollutants in quantifying climate impacts of future mitigation measures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Contaminación del Aire/análisis , Material Particulado/análisis , Nitratos , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Contaminantes Atmosféricos/análisis , Sulfatos , Monitoreo del Ambiente
5.
J Geophys Res Atmos ; 127(9): e2021JD035687, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35865809

RESUMEN

We conduct the first 4D-Var inversion of NH3 accounting for NH3 bi-directional flux, using CrIS satellite NH3 observations over Europe in 2016. We find posterior NH3 emissions peak more in springtime than prior emissions at continental to national scales, and annually they are generally smaller than the prior emissions over central Europe, but larger over most of the rest of Europe. Annual posterior anthropogenic NH3 emissions for 25 European Union members (EU25) are 25% higher than the prior emissions and very close (<2% difference) to other inventories. Our posterior annual anthropogenic emissions for EU25, the UK, the Netherlands, and Switzerland are generally 10%-20% smaller than when treating NH3 fluxes as uni-directional emissions, while the monthly regional difference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ observations, our posterior NH3 emissions from both schemes generally improve the magnitude and seasonality of simulated surface NH3 and bulk NH x wet deposition throughout most of Europe, whereas evaluation against hourly measurements at a background site shows the bi-directional scheme better captures observed diurnal variability of surface NH3. This contrast highlights the need for accurately simulating diurnal variability of NH3 in assimilation of sun-synchronous observations and also the potential value of future geostationary satellite observations. Overall, our top-down ammonia emissions can help to examine the effectiveness of air pollution control policies to facilitate future air pollution management, as well as helping us understand the uncertainty in top-down NH3 emissions estimates associated with treatment of NH3 surface exchange.

6.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108210

RESUMEN

Efforts to stem the transmission of coronavirus disease 2019 (COVID-19) led to rapid, global ancillary reductions in air pollutant emissions. Here, we quantify the impact on tropospheric ozone using a multiconstituent chemical data assimilation system. Anthropogenic NO x emissions dropped by at least 15% globally and 18 to 25% regionally in April and May 2020, which decreased free tropospheric ozone by up to 5 parts per billion, consistent with independent satellite observations. The global total tropospheric ozone burden declined by 6TgO3 (∼2%) in May and June 2020, largely due to emission reductions in Asia and the Americas that were amplified by regionally high ozone production efficiencies (up to 4 TgO3/TgN). Our results show that COVID-19 mitigation left a global atmospheric imprint that altered atmospheric oxidative capacity and climate radiative forcing, providing a test of the efficacy of NO x emissions controls for co-benefiting air quality and climate.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Atmósfera/análisis , COVID-19/epidemiología , Exposición a Riesgos Ambientales/análisis , Óxido Nítrico/análisis , Ozono/análisis , COVID-19/virología , Clima , Monitoreo del Ambiente , Salud Global , Humanos , SARS-CoV-2/aislamiento & purificación
7.
Atmos Chem Phys ; 20(23): 14617-14647, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414818

RESUMEN

Global coupled chemistry-climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea-United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42% in the control run and by 12% with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80% for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O3 datasets and observationally constrained box model simulations of OH and HO2. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29% for CO, 18% for ozone, 11% for HO2, and 27% for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O3, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO x controls, can improve ozone pollution over East Asia.

8.
J Geophys Res Atmos ; 124(23): 13560-13575, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-32913698

RESUMEN

Near-surface air quality (AQ) observations over coastal waters are scarce, a situation that limits our capacity to monitor pollution events at land-water interfaces. Satellite measurements of total column (TC) nitrogen dioxide (NO2) observations are a useful proxy for combustion sources but the once daily snapshots available from most sensors are insufficient for tracking the diurnal evolution and transport of pollution. Ground-based remote sensors like the Pandora Spectrometer Instrument (PSI) that have been developed to verify space-based total column NO2 and other trace gases are being tested for routine use as certified AQ monitors. The KORUS-OC (Korea-United States Ocean Color) cruise aboard the R/V Onnuri in May-June 2016 represented an opportunity to study AQ near the South Korean coast, a region affected by both local/regional and long-distance pollution sources. Using PSI data in direct-sun mode and in situ sensors for shipboard ozone, CO and NO2, we explore, for the first time, relationships between TC NO2 and surface AQ in this coastal region. Three case studies illustrate the value of the PSI as well as complexities in the surface-column NO2 relationship caused by varying meteorological conditions. Case Study 1 (25-26 May 2016) exhibited a high correlation of surface NO2 to TC NO2 measured by both PSI and Aura's Ozone Monitoring Instrument (OMI) but two other cases displayed poor relationships between in situ and TC NO2 due to decoupling of pollution layers from the surface. With suitable interpretation the PSI TC NO2 measurement demonstrates good potential for working with upcoming geostationary satellites to advance diurnal tracking of pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA