Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34423346

RESUMEN

During convergent differentiation, multiple developmental lineages produce a highly similar or identical cell type. However, few molecular players that drive convergent differentiation are known. Here, we show that the C. elegans Forkhead transcription factor UNC-130 is required in only one of three convergent lineages that produce the same glial cell type. UNC-130 acts transiently as a repressor in progenitors and newly-born terminal cells to allow the proper specification of cells related by lineage rather than by cell type or function. Specification defects correlate with UNC-130:DNA binding, and UNC-130 can be functionally replaced by its human homolog, the neural crest lineage determinant FoxD3. We propose that, in contrast to terminal selectors that activate cell type-specific transcriptional programs in terminally differentiating cells, UNC-130 acts early and specifically in one convergent lineage to produce a cell type that also arises from molecularly distinct progenitors in other lineages.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Linaje de la Célula , Neuroglía/metabolismo , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Humanos , Neuroglía/citología , Factores de Transcripción/genética
2.
Development ; 140(15): 3188-97, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23824579

RESUMEN

Several models of cell fate determination can be invoked to explain how single retinal progenitor cells (RPCs) produce different cell types in a terminal division. To gain insight into this process, the effects of the removal of a cell fate regulator, Notch1, were studied in newly postmitotic cells using a conditional allele of Notch1 (N1-CKO) in mice. Almost all newly postmitotic N1-CKO cells became rod photoreceptors, whereas wild-type (WT) cells achieved a variety of fates. Single cell profiling of wild-type and N1-CKO retinal cells transitioning from progenitor to differentiated states revealed differential expression of inhibitor of DNA binding factors Id1 and Id3, as well as Notch-regulated ankyrin repeat protein (Nrarp). Misexpression of Id1 and Id3 was found to be sufficient to drive production of Müller glial cells and/or RPCs. Moreover, Id1 and Id3 were shown to partially rescue the production of bipolar and Müller glial cells in the absence of Notch1 in mitotic and newly postmitotic cells. Misexpression of Nrarp, a downstream target gene and inhibitor of the Notch signaling pathway, resulted in the overproduction of rod photoreceptors at the expense of Müller glial cells. These data demonstrate that cell fate decisions can be made in newly postmitotic retinal cells, and reveal some of the regulators downstream of Notch1 that influence the choice of rod and non-rod fates. Taken together, our results begin to address how different signals downstream from a common pathway lead to different fate outcomes.


Asunto(s)
Receptor Notch1/metabolismo , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes/métodos , Proteína 1 Inhibidora de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/genética , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Mitosis , Modelos Biológicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Notch1/deficiencia , Receptor Notch1/genética , Retina/citología , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal
3.
Nature ; 463(7279): 374-8, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20090754

RESUMEN

Cyclin D1 belongs to the core cell cycle machinery, and it is frequently overexpressed in human cancers. The full repertoire of cyclin D1 functions in normal development and oncogenesis is unclear at present. Here we developed Flag- and haemagglutinin-tagged cyclin D1 knock-in mouse strains that allowed a high-throughput mass spectrometry approach to search for cyclin D1-binding proteins in different mouse organs. In addition to cell cycle partners, we observed several proteins involved in transcription. Genome-wide location analyses (chromatin immunoprecipitation coupled to DNA microarray; ChIP-chip) showed that during mouse development cyclin D1 occupies promoters of abundantly expressed genes. In particular, we found that in developing mouse retinas-an organ that critically requires cyclin D1 function-cyclin D1 binds the upstream regulatory region of the Notch1 gene, where it serves to recruit CREB binding protein (CBP) histone acetyltransferase. Genetic ablation of cyclin D1 resulted in decreased CBP recruitment, decreased histone acetylation of the Notch1 promoter region, and led to decreased levels of the Notch1 transcript and protein in cyclin D1-null (Ccnd1(-/-)) retinas. Transduction of an activated allele of Notch1 into Ccnd1(-/-) retinas increased proliferation of retinal progenitor cells, indicating that upregulation of Notch1 signalling alleviates the phenotype of cyclin D1-deficiency. These studies show that in addition to its well-established cell cycle roles, cyclin D1 has an in vivo transcriptional function in mouse development. Our approach, which we term 'genetic-proteomic', can be used to study the in vivo function of essentially any protein.


Asunto(s)
Ciclina D1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteómica , Transcripción Genética , Alelos , Animales , Proteína de Unión a CREB/metabolismo , Inmunoprecipitación de Cromatina , Ciclina D1/deficiencia , Ciclina D1/genética , Genoma/genética , Ensayos Analíticos de Alto Rendimiento , Histona Acetiltransferasas/metabolismo , Espectrometría de Masas , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteómica/métodos , Ratas , Receptor Notch1/genética , Receptor Notch1/metabolismo , Retina/citología , Retina/embriología , Retina/metabolismo , Células Madre/citología , Células Madre/metabolismo
4.
Dev Dyn ; 242(10): 1147-59, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23813500

RESUMEN

BACKGROUND: The vertebrate retina comprises sensory neurons, the photoreceptors, as well as many other types of neurons and one type of glial cell. These cells are generated by multipotent and restricted retinal progenitor cells (RPCs), which express Notch1. Loss of Notch1 in RPCs late during retinal development results in the overproduction of rod photoreceptors at the expense of interneurons and glia. RESULTS: To examine the molecular underpinnings of this observation, microarray analysis of single retinal cells from wild-type or Notch1 conditional knockout retinas was performed. In situ hybridization was carried out to validate some of the findings. CONCLUSIONS: The majority of Notch1-mutant cells lost expression of known Notch target genes. These cells also had low levels of RPC and cell cycle genes, and robustly up-regulated rod precursor genes. In addition, single wild-type cells, in which cell cycle marker genes were down-regulated, expressed markers of both rod photoreceptors and interneurons.


Asunto(s)
Ciclo Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptor Notch1/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Madre/metabolismo , Animales , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptor Notch1/genética , Células Fotorreceptoras Retinianas Bastones/citología , Células Madre/citología
5.
J Dev Biol ; 9(4)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34698211

RESUMEN

The extracellular matrix (ECM) guides and constrains the shape of the nervous system. In C. elegans, DIG-1 is a giant ECM component that is required for fasciculation of sensory dendrites during development and for maintenance of axon positions throughout life. We identified four novel alleles of dig-1 in three independent screens for mutants affecting disparate aspects of neuronal and glial morphogenesis. First, we find that disruption of DIG-1 causes fragmentation of the amphid sheath glial cell in larvae and young adults. Second, it causes severing of the BAG sensory dendrite from its terminus at the nose tip, apparently due to breakage of the dendrite as animals reach adulthood. Third, it causes embryonic defects in dendrite fasciculation in inner labial (IL2) sensory neurons, as previously reported, as well as rare defects in IL2 dendrite extension that are enhanced by loss of the apical ECM component DYF-7, suggesting that apical and basolateral ECM contribute separately to dendrite extension. Our results highlight novel roles for DIG-1 in maintaining the cellular integrity of neurons and glia, possibly by creating a barrier between structures in the nervous system.

6.
Wiley Interdiscip Rev Dev Biol ; 4(2): 151-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25611728

RESUMEN

UNLABELLED: Glia constitute a major, understudied population of cells in the nervous system. Currently, it is appreciated that these cells exhibit vast morphological, functional, and molecular diversity, but our understanding of glial biology is limited. Some key unanswered questions include how glial diversity is generated during development and what functions distinct glial subtypes serve in the mature nervous system. The nematode Caenorhabditis elegans contains a defined set of glia, which have clear morphological and molecular differences, and thus provides a simplified model for understanding glial diversity. In addition, recent experiments suggest that the molecular mechanisms underlying the generation of glial diversity in C. elegans are conserved with those in mammals. In this review, we summarize the surprising diversity of glial subtypes present in this simple organism, and highlight current thinking about what roles they perform in the nervous system. We emphasize how genetic approaches may be used to identify the mechanistic origins of glial diversity, which is key to understanding how glia function in health and disease. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST: The authors have declared no conflicts of interest for this article.


Asunto(s)
Caenorhabditis elegans/metabolismo , Neuroglía/metabolismo , Animales , Modelos Biológicos , Órganos de los Sentidos/anatomía & histología , Órganos de los Sentidos/metabolismo
7.
Dev Dyn ; 237(1): 132-44, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18069689

RESUMEN

The Bone morphogenetic proteins (BMPs) mediate a wide range of diverse cellular behaviors throughout development. Previous studies implicated an important role for BMP signaling during the differentiation of the definitive mammalian kidney, the metanephros. In order to examine whether BMP signaling also plays an important role during the patterning of earlier renal systems, we examined the development of the earliest nephric system, the pronephros. Using the amphibian model system Xenopus laevis, in combination with reagents designed to inhibit BMP signaling during specific stages of nephric development, we revealed an evolutionarily conserved role for this signaling pathway during renal morphogenesis. Our results demonstrate that conditional BMP inhibition after specification of the pronephric anlagen is completed, but prior to the onset of morphogenesis and differentiation of renal tissues, results in the severe malformation of both the pronephric duct and tubules. Importantly, the effects of BMP signaling on the developing nephron during this developmental window are specific, only affecting the developing duct and tubules, but not the glomus. These data, combined with previous studies examining metanephric development in mice, provide further support that BMP functions to mediate morphogenesis of the specified renal field during vertebrate embryogenesis. Specifically, BMP signaling is required for the differentiation of two types of nephric structures, the pronephric tubules and duct.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/fisiología , Riñón/metabolismo , Transducción de Señal/fisiología , Proteínas de Xenopus/fisiología , Animales , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Riñón/citología , Riñón/embriología , Túbulos Renales/citología , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Microinyecciones , Morfogénesis , Nefronas/citología , Nefronas/embriología , Nefronas/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/fisiología , Transducción de Señal/genética , Proteína smad6/genética , Proteína smad6/fisiología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA