Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 164(5): 1060-1072, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919435

RESUMEN

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Metilación de ADN , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/patología , Secuencia de Aminoácidos , Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Tumores Neuroectodérmicos/clasificación , Tumores Neuroectodérmicos/diagnóstico , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal , Transactivadores , Proteínas Supresoras de Tumor/genética
2.
PLoS Genet ; 17(4): e1009406, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830999

RESUMEN

Phospholipase D3 (PLD3) is a protein of unclear function that structurally resembles other members of the phospholipase D superfamily. A coding variant in this gene confers increased risk for the development of Alzheimer's disease (AD), although the magnitude of this effect has been controversial. Because of the potential significance of this obscure protein, we undertook a study to observe its distribution in normal human brain and AD-affected brain, determine whether PLD3 is relevant to memory and cognition in sporadic AD, and to evaluate its molecular function. In human neuropathological samples, PLD3 was primarily found within neurons and colocalized with lysosome markers (LAMP2, progranulin, and cathepsins D and B). This colocalization was also present in AD brain with prominent enrichment on lysosomal accumulations within dystrophic neurites surrounding ß-amyloid plaques. This pattern of protein distribution was conserved in mouse brain in wild type and the 5xFAD mouse model of cerebral ß-amyloidosis. We discovered PLD3 has phospholipase D activity in lysosomes. A coding variant in PLD3 reported to confer AD risk significantly reduced enzymatic activity compared to wild-type PLD3. PLD3 mRNA levels in the human pre-frontal cortex inversely correlated with ß-amyloid pathology severity and rate of cognitive decline in 531 participants enrolled in the Religious Orders Study and Rush Memory and Aging Project. PLD3 levels across genetically diverse BXD mouse strains and strains crossed with 5xFAD mice correlated strongly with learning and memory performance in a fear conditioning task. In summary, this study identified a new functional mammalian phospholipase D isoform which is lysosomal and closely associated with both ß-amyloid pathology and cognition.


Asunto(s)
Enfermedad de Alzheimer/genética , Disfunción Cognitiva/genética , Predisposición Genética a la Enfermedad , Fosfolipasa D/genética , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Animales , Autopsia , Disfunción Cognitiva/enzimología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Células HeLa , Humanos , Lisosomas/enzimología , Lisosomas/patología , Ratones , Neuronas/enzimología , Neuronas/patología , Placa Amiloide/enzimología , Placa Amiloide/genética , Placa Amiloide/patología
3.
Am J Physiol Heart Circ Physiol ; 325(5): H965-H982, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624101

RESUMEN

With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.


Asunto(s)
Mitocondrias , Miocardio , Humanos , Masculino , Ratones , Animales , Mitocondrias/metabolismo , Miocardio/metabolismo , Corazón , Envejecimiento , Transducción de Señal , Proteínas Mitocondriales/metabolismo
4.
Pediatr Blood Cancer ; 68(1): e28750, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001573

RESUMEN

One goal of precision medicine is to identify mutations within individual tumors to design targeted treatment approaches. This report details the use of genomic testing to select a targeted therapy regimen of erlotinib and rapamycin for a pediatric anaplastic oligodendroglioma refractory to standard treatment, achieving a 33-month sustained response. Immunohistochemical analysis of total and phosphorylated protein isoforms showed abnormal signaling consistent with detected mutations, while revealing heterogeneity in per-cell activation of signaling pathways in multiple subpopulations of tumor cells throughout the course of disease. This case highlights molecular features that may be relevant to designing future targeted treatments.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Oligodendroglioma/tratamiento farmacológico , Niño , Clorhidrato de Erlotinib/administración & dosificación , Femenino , Humanos , Pronóstico , Inducción de Remisión , Sirolimus/administración & dosificación
5.
Am J Pathol ; 188(1): 29-38, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29024634

RESUMEN

Increasing evidence indicates that the adult neurogenic niche of the ventricular-subventricular zone (V-SVZ), beyond serving as a potential site of origin, affects the outcome of malignant brain cancers. Glioma contact with this niche predicts worse prognosis, suggesting a supportive role for the V-SVZ environment in tumor initiation or progression. In this review, we describe unique components of the V-SVZ that may permit or promote tumor growth within the region. Cell-cell interactions, soluble factors, and extracellular matrix composition are discussed, and the role of the niche in future therapies is explored. The purpose of this review is to highlight niche intrinsic factors that may promote or support malignant cell growth and maintenance, and point out how we might leverage these features to improve patient outcome.


Asunto(s)
Neoplasias Encefálicas/patología , Células-Madre Neurales/patología , Neurogénesis/fisiología , Nicho de Células Madre/fisiología , Animales , Humanos
6.
Ann Neurol ; 83(4): 756-770, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29518270

RESUMEN

OBJECTIVE: Charcot-Marie-Tooth type 4J (CMT4J) is a rare autosomal recessive neuropathy caused by mutations in FIG4 that result in loss of FIG4 protein. This study investigates the natural history and mechanisms of segmental demyelination in CMT4J. METHODS: Over the past 9 years, we have enrolled and studied a cohort of 12 CMT4J patients, including 6 novel FIG4 mutations. We evaluated these patients and related mouse models using morphological, electrophysiological, and biochemical approaches. RESULTS: We found sensory motor demyelinating polyneuropathy consistently in all patients. This underlying myelin pathology was associated with nonuniform slowing of conduction velocities, conduction block, and temporal dispersion on nerve conduction studies, which resemble those features in acquired demyelinating peripheral nerve diseases. Segmental demyelination was also confirmed in mice without Fig4 (Fig4-/- ). The demyelination was associated with an increase of Schwann cell dedifferentiation and macrophages in spinal roots where nerve-blood barriers are weak. Schwann cell dedifferentiation was induced by the increasing intracellular Ca2+ . Suppression of Ca2+ level by a chelator reduced dedifferentiation and demyelination of Schwann cells in vitro and in vivo. Interestingly, cell-specific knockout of Fig4 in mouse Schwann cells or neurons failed to cause segmental demyelination. INTERPRETATION: Myelin change in CMT4J recapitulates the features of acquired demyelinating neuropathies. This pathology is not Schwann cell autonomous. Instead, it relates to systemic processes involving interactions of multiple cell types and abnormally elevated intracellular Ca2+ . Injection of a Ca2+ chelator into Fig4-/- mice improved segmental demyelination, thereby providing a therapeutic strategy against demyelination. Ann Neurol 2018;83:756-770.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedades Desmielinizantes/genética , Flavoproteínas/genética , Mutación , Vaina de Mielina/patología , Monoéster Fosfórico Hidrolasas/genética , Potenciales de Acción/genética , Adolescente , Adulto , Animales , Calcio/metabolismo , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Estudios de Cohortes , Enfermedades Desmielinizantes/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Flavoproteínas/metabolismo , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fibras Nerviosas/patología , Fibras Nerviosas/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Conducción Nerviosa/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Nervio Ciático/metabolismo , Nervio Ciático/patología
7.
J Neurooncol ; 138(2): 307-313, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29423539

RESUMEN

The presence of the single-nucleotide polymorphism (SNP) rs11554137:C>T in the IDH1 gene is associated with a significantly lower survival in acute myeloid leukemia patients. The impact of its presence in glioblastoma on patient survival is unclear. We retrospectively reviewed 171 adult (> 18 years of age) patients treated at a single, tertiary academic center for supratentorial glioblastoma (WHO grade IV) between 2013 and 2017. We conducted Kaplan-Meier overall and progression free survival analyses based on the IDH1 and IDH2 gene status of patients' glioblastoma (IDH wild type, mutant, and IDH1 rs11554137:C>T SNP). Multivariate Cox survival analyses were conducted accounting for age at diagnosis, preoperative Karnofsky performance status score, treatment (extent of resection, postoperative radiotherapy, and temozolomide), IDH gene variant, and MGMT promoter methylation status. Presence of rs11554137:C>T SNP in glioblastoma samples did not correlate with presence of IDH1 mutation. Patients with rs11554137:C>T SNP did not have histories of prior lower-grade gliomas. Patients with IDH mutant glioblastoma had a distinctly higher survival profile than both rs11554137:C>T SNP and IDH wild type glioblastomas. No survival difference was noted between patients with glioblastoma harboring the SNP and patients with IDH wild type glioblastoma. In this study, clinical prognostication in glioblastoma patients was largely dependent on the classification of IDH mutant and wild type glioblastoma, and not on the presence of IDH1 rs11554137:C>T SNP in the tumor.


Asunto(s)
Glioblastoma/genética , Isocitrato Deshidrogenasa/genética , Polimorfismo de Nucleótido Simple , Neoplasias Supratentoriales/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Predisposición Genética a la Enfermedad , Glioblastoma/enzimología , Glioblastoma/mortalidad , Glioblastoma/terapia , Humanos , Persona de Mediana Edad , Mutación , Pronóstico , Estudios Retrospectivos , Neoplasias Supratentoriales/enzimología , Neoplasias Supratentoriales/mortalidad , Neoplasias Supratentoriales/terapia , Análisis de Supervivencia
8.
N Engl J Med ; 367(22): 2119-25, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23083311

RESUMEN

Persistent neutrophilic meningitis presents a diagnostic challenge, because the differential diagnosis is broad and includes atypical infectious causes. We describe a case of persistent neutrophilic meningitis due to Aspergillus fumigatus in an immunocompetent man who had no evidence of sinopulmonary or cutaneous disease. An epidural glucocorticoid injection was identified as a potential route of entry for this organism into the central nervous system, and the case was reported to the state health department.


Asunto(s)
Aspergilosis/diagnóstico , Aspergillus fumigatus/aislamiento & purificación , Encéfalo/patología , Líquido Cefalorraquídeo/parasitología , Contaminación de Medicamentos , Meningitis Fúngica/diagnóstico , Aspergilosis/etiología , Encéfalo/diagnóstico por imagen , Cerebelo/irrigación sanguínea , Infarto Cerebral/etiología , Infarto Cerebral/patología , Diagnóstico Diferencial , Brotes de Enfermedades , Resultado Fatal , Glucocorticoides/administración & dosificación , Cefalea/etiología , Humanos , Inyecciones Epidurales/efectos adversos , Hemorragias Intracraneales/diagnóstico por imagen , Hemorragias Intracraneales/etiología , Dolor de la Región Lumbar/tratamiento farmacológico , Dolor de la Región Lumbar/etiología , Masculino , Meningitis Fúngica/epidemiología , Meningitis Fúngica/etiología , Persona de Mediana Edad , Tomografía Computarizada por Rayos X , Estados Unidos
9.
Acta Neuropathol ; 130(4): 575-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26264609

RESUMEN

Among brain tumors, the BRAF (V600E) mutation is frequently associated with pleomorphic xanthoastrocytomas (PXAs) and gangliogliomas (GGs). This oncogenic mutation is also detected in ~5 % of other pediatric low-grade gliomas (LGGs) including pilocytic astrocytomas (PAs) and diffuse astrocytomas. In the current multi-institutional study of 56 non-PXA/non-GG diencephalic pediatric LGGs, the BRAF (V600) mutation rate is 36 %. V600-mutant tumors demonstrate a predilection for infants and young children (

Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Diencéfalo/patología , Glioma/genética , Glioma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Adolescente , Factores de Edad , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/terapia , Niño , Preescolar , Estudios de Cohortes , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Glioma/epidemiología , Glioma/terapia , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Mutación , Clasificación del Tumor , Resultado del Tratamiento
10.
N Engl J Med ; 364(7): 627-37, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21175304

RESUMEN

BACKGROUND: Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS: We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS: NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O(6)-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS: Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival.


Asunto(s)
Eliminación de Gen , Genes erbB-1 , Glioblastoma/genética , Proteínas I-kappa B/genética , Análisis Mutacional de ADN , Amplificación de Genes , Expresión Génica , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Inhibidor NF-kappaB alfa , Pronóstico , Células Tumorales Cultivadas
11.
J Neurol ; 271(6): 3648-3652, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478031

RESUMEN

BACKGROUND AND OBJECTIVE: Primary angiitis of the central nervous system (PACNS) is a rare form of vasculitis solely affecting the vessels of the brain, spinal cord, and leptomeninges. A range of magnetic resonance imaging (MRI) features have been associated with PACNS, including cerebral infarction, hemorrhage, and parenchymal or leptomeningeal contrast enhancement. METHODS AND RESULTS: We describe a 51-year-old man with a case of PACNS manifesting as akinetic mutism with progressive leukoencephalopathy. DISCUSSION: Progressive leukoencephalopathy has not been well defined as a manifestation of PACNS. We review a small number of cases with comparable features, providing additional context on this PACNS manifestation with consideration of clinical subtypes.


Asunto(s)
Leucoencefalopatías , Vasculitis del Sistema Nervioso Central , Humanos , Masculino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Leucoencefalopatías/diagnóstico por imagen , Imagen por Resonancia Magnética , Vasculitis del Sistema Nervioso Central/diagnóstico por imagen , Vasculitis del Sistema Nervioso Central/complicaciones
12.
Artículo en Inglés | MEDLINE | ID: mdl-38953209

RESUMEN

The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder. Though BCs can be identified by an expert neuropathologist, little is known about the specificity and broad applicability of protein markers for these cells, complicating classification of proposed BCs identified in experimental models of this disorder. Here, we report the development of a customized machine learning pipeline (BAlloon IDENtifier; BAIDEN) that was trained to prospectively identify BCs in tissue sections using a histological stain compatible with high-dimensional cytometry. This approach was coupled to a custom 36-antibody panel and imaging mass cytometry (IMC) to explore the expression of multiple previously proposed BC marker proteins and develop a descriptor of BC features conserved across multiple tissue samples from patients with TSC. Here, we present a modular workflow encompassing BAIDEN, a custom antibody panel, a control sample microarray, and analysis pipelines-both open-source and in-house-and apply this workflow to understand the abundance, structure, and signaling activity of BCs as an example case of how high-dimensional imaging can be applied within human tissues.

13.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659767

RESUMEN

Cerebral amyloid angiopathy (CAA) is a vasculopathy characterized by vascular ß-amyloid (Aß) deposition on cerebral blood vessels. CAA is closely linked to Alzheimer's disease (AD) and intracerebral hemorrhage. CAA is associated with the loss of autoregulation in the brain, vascular rupture, and cognitive decline. To assess morphological and molecular changes associated with the degeneration of penetrating arterioles in CAA, we analyzed post-mortem human brain tissue from 26 patients with mild, moderate, and severe CAA end neurological controls. The tissue was optically cleared for three-dimensional light sheet microscopy, and morphological features were quantified using surface volume rendering. We stained Aß, vascular smooth muscle (VSM), lysyl oxidase (LOX), and vascular markers to visualize the relationship between degenerative morphological features, including vascular dilation, dolichoectasia (variability in lumenal diameter) and tortuosity, and the volumes of VSM, Aß, and LOX in arterioles. Atomic force microscopy (AFM) was used to assess arteriolar wall stiffness, and we identified a pattern of morphological features associated with degenerating arterioles in the cortex. The volume of VSM associated with the arteriole was reduced by around 80% in arterioles with severe CAA and around 60% in cases with mild/moderate CAA. This loss of VSM correlated with increased arteriolar diameter and variability of diameter, suggesting VSM loss contributes to arteriolar laxity. These vascular morphological features correlated strongly with Aß deposits. At sites of microhemorrhage, Aß was consistently present, although the morphology of the deposits changed from the typical organized ring shape to sharply contoured shards with marked dilation of the vessel. AFM showed that arteriolar walls with CAA were more than 400% stiffer than those without CAA. Finally, we characterized the association of vascular degeneration with LOX, finding strong associations with VSM loss and vascular degeneration. These results show an association between vascular Aß deposition, microvascular degeneration, and increased vascular stiffness, likely due to the combined effects of replacement of VSM by ß-amyloid, cross-linking of extracellular matrices (ECM) by LOX, and possibly fibrosis. This advanced microscopic imaging study clarifies the association between Aß deposition and vascular fragility. Restoration of physiologic ECM properties in penetrating arteries may yield a novel therapeutic strategy for CAA.

14.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585888

RESUMEN

Adult IDH-wildtype glioblastoma (GBM) is a highly aggressive brain tumor with no established immunotherapy or targeted therapy. Recently, CD32+ HLA-DRhi macrophages were shown to have displaced resident microglia in GBM tumors that contact the lateral ventricle stem cell niche. Since these lateral ventricle contacting GBM tumors have especially poor outcomes, identifying the origin and role of these CD32+ macrophages is likely critical to developing successful GBM immunotherapies. Here, we identify these CD32+ cells as M_IL-8 macrophages and establish that IL-8 is sufficient and necessary for tumor cells to instruct healthy macrophages into CD32+ M_IL-8 M2 macrophages. In ex vivo experiments with conditioned medium from primary human tumor cells, inhibitory antibodies to IL-8 blocked the generation of CD32+ M_IL-8 cells. Finally, using a set of 73 GBM tumors, IL-8 protein is shown to be present in GBM tumor cells in vivo and especially common in tumors contacting the lateral ventricle. These results provide a mechanistic origin for CD32+ macrophages that predominate in the microenvironment of the most aggressive GBM tumors. IL-8 and CD32+ macrophages should now be explored as targets in combination with GBM immunotherapies, especially for patients whose tumors present with radiographic contact with the ventricular-subventricular zone stem cell niche.

15.
Cancer Res ; 84(5): 675-687, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38190717

RESUMEN

Therapy resistance and metastatic progression are primary causes of cancer-related mortality. Disseminated tumor cells possess adaptive traits that enable them to reprogram their metabolism, maintain stemness, and resist cell death, facilitating their persistence to drive recurrence. The survival of disseminated tumor cells also depends on their ability to modulate replication stress in response to therapy while colonizing inhospitable microenvironments. In this study, we discovered that the nuclear translocation of AXL, a TAM receptor tyrosine kinase, and its interaction with WRNIP1, a DNA replication stress response factor, promotes the survival of HER2+ breast cancer cells that are resistant to HER2-targeted therapy and metastasize to the brain. In preclinical models, knocking down or pharmacologically inhibiting AXL or WRNIP1 attenuated protection of stalled replication forks. Furthermore, deficiency or inhibition of AXL and WRNIP1 also prolonged metastatic latency and delayed relapse. Together, these findings suggest that targeting the replication stress response, which is a shared adaptive mechanism in therapy-resistant and metastasis-initiating cells, could reduce metachronous metastasis and enhance the response to standard-of-care therapies. SIGNIFICANCE: Nuclear AXL and WRNIP1 interact and mediate replication stress response, promote therapy resistance, and support metastatic progression, indicating that targeting the AXL/WRNIP1 axis is a potentially viable therapeutic strategy for breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/metabolismo , Recurrencia Local de Neoplasia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Microambiente Tumoral , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo
16.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38168206

RESUMEN

Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.

17.
AJR Am J Roentgenol ; 200(4): 895-903, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23521467

RESUMEN

OBJECTIVE: We hypothesized that the apparent diffusion coefficient (ADC) and other MRI features can be used to predict medulloblastoma histologic subtypes, as defined by the World Health Organization (WHO) in WHO Classification of Tumours of the Central Nervous System. MATERIALS AND METHODS: A retrospective review of pediatric patients with medulloblastoma between 1989 and 2011 identified 38 patients with both pretreatment MRI and original pathology slides. The mean and minimum tumor ADC values and conventional MRI features were compared among medulloblastoma histologic subtypes. RESULTS: The cohort of 38 patients included the following histologic subtypes: 24 classic medulloblastomas, nine large cell (LC) or anaplastic medulloblastomas, four desmoplastic medulloblastomas, and one medulloblastoma with extensive nodularity. The median age at diagnosis was 8 years (range, 1-21 years) and the median follow-up time was 33 months (range, 0-150 months). The mean ADC (× 10(-3) mm(2)/s) was lower in classic medulloblastoma (0.733 ± 0.046 [SD]) than in LC or anaplastic medulloblastoma (0.935 ± 0.127) (Mann-Whitney test, p = 0.004). Similarly, the minimum ADC was lower in classic medulloblastoma (average ± SD, 0.464 ± 0.056) than in LC or anaplastic medulloblastoma (0.630 ± 0.053) (p = 0.004). The MRI finding of focal cysts correlated with the classic and desmoplastic subtypes (Fisher exact test, p = 0.026). Leptomeningeal enhancement positively correlated with the LC or anaplastic medulloblastoma subtype and inversely correlated with the classic medulloblastoma and desmoplastic medulloblastoma subtypes (p = 0.04). Ring enhancement correlated with tumor necrosis (p = 0.022) and with the LC or anaplastic medulloblastoma histologic subtype (p < 0.001). CONCLUSION: The LC or anaplastic medulloblastoma subtype was associated with increased ADC and with ring enhancement, the latter of which correlated with tumor necrosis. These features could be considered in the evaluation of high-risk medulloblastoma subtypes.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Imagen por Resonancia Magnética/métodos , Meduloblastoma/diagnóstico , Adolescente , Neoplasias Encefálicas/patología , Distribución de Chi-Cuadrado , Niño , Preescolar , Medios de Contraste , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Lactante , Masculino , Meduloblastoma/patología , Estudios Retrospectivos , Estadísticas no Paramétricas , Adulto Joven
18.
medRxiv ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38234786

RESUMEN

Congenital DNA mismatch repair defects (dMMR), such as Lynch Syndrome, predispose patients to a variety of cancers and account for approximately 1% of glioblastoma cases. While few therapeutic options exist for glioblastoma, checkpoint blockade therapy has proven effective in dMMR tumors. Here we present a case study of a male in their 30s diagnosed with dMMR glioblastoma treated with pembrolizumab who experienced a partial response to therapy. Using a multiplex IHC analysis pipeline on archived slide specimens from tumor resections at diagnosis and after therapeutic interventions, we quantified changes in the frequency and spatial distribution of key cell populations in the tumor tissue. Notably, proliferating (KI67+) macrophages and T cells increased in frequency as did other KI67+ cells within the tumor. Therapeutic intervention remodeled the cellular spatial distribution in the tumor leading to a greater frequency of macrophage/tumor cell interactions and T cell/T cell interactions, highlighting impacts of checkpoint blockade on tumor cytoarchitecture and revealing spatial patterns that may indicate advantageous immune interactions in glioma and other solid tumors treated with these agents.

19.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37192001

RESUMEN

Radiographic contact of glioblastoma (GBM) tumors with the lateral ventricle and adjacent stem cell niche correlates with poor patient prognosis, but the cellular basis of this difference is unclear. Here, we reveal and functionally characterize distinct immune microenvironments that predominate in subtypes of GBM distinguished by proximity to the lateral ventricle. Mass cytometry analysis of isocitrate dehydrogenase wild-type human tumors identified elevated T cell checkpoint receptor expression and greater abundance of a specific CD32+CD44+HLA-DRhi macrophage population in ventricle-contacting GBM. Multiple computational analysis approaches, phospho-specific cytometry, and focal resection of GBMs validated and extended these findings. Phospho-flow quantified cytokine-induced immune cell signaling in ventricle-contacting GBM, revealing differential signaling between GBM subtypes. Subregion analysis within a given tumor supported initial findings and revealed intratumor compartmentalization of T cell memory and exhaustion phenotypes within GBM subtypes. Collectively, these results characterize immunotherapeutically targetable features of macrophages and suppressed lymphocytes in GBMs defined by MRI-detectable lateral ventricle contact.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/patología , Glioblastoma/genética , Neoplasias Encefálicas/genética , Linfocitos/patología , Macrófagos/patología , Microambiente Tumoral
20.
Nat Cancer ; 4(6): 893-907, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248394

RESUMEN

Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Dinaminas/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA