Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 58(6): 1001-14, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26004228

RESUMEN

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Secuencia de Aminoácidos , Animales , Factor Inductor de la Apoptosis/genética , Línea Celular Tumoral , Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Humanos , Immunoblotting , Ratones Noqueados , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas/genética , Interferencia de ARN , Factores de Tiempo
2.
Trends Biochem Sci ; 41(3): 245-260, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26782138

RESUMEN

Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Conformación Proteica
3.
Trends Biochem Sci ; 35(5): 278-87, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20138767

RESUMEN

Apoptosis-inducing factor (AIF) was initially discovered as a caspase-independent death effector. AIF fulfills its lethal function after its release from mitochondria and its translocation to the nucleus of the dying cell. The contribution of AIF to programmed cell death is dependent upon the cell type and apoptotic insult. Recent in vivo data indicate that, in addition to its lethal activity, AIF plays a vital mitochondrial role in healthy cells. A segment of AIF which is dispensable for its apoptotic function carries an NADH-oxidase domain that regulates the respiratory chain complex I and is required for cell survival, proliferation and mitochondrial integrity. Mice that express reduced levels of AIF constitute a reliable model of complex I deficiency. Here we discuss recent reports on the survival-related function(s) of AIF.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Factor Inductor de la Apoptosis/fisiología , Apoptosis/fisiología , Animales , Núcleo Celular/metabolismo , Supervivencia Celular , Humanos , Ratones , Mitocondrias/metabolismo , Complejos Multienzimáticos , NADH NADPH Oxidorreductasas , Transporte de Proteínas
4.
J Exp Med ; 204(8): 1741-8, 2007 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-17635954

RESUMEN

Upon cerebral hypoxia-ischemia (HI), apoptosis-inducing factor (AIF) can move from mitochondria to nuclei, participate in chromatinolysis, and contribute to the execution of cell death. Previous work (Cande, C., N. Vahsen, I. Kouranti, E. Schmitt, E. Daugas, C. Spahr, J. Luban, R.T. Kroemer, F. Giordanetto, C. Garrido, et al. 2004. Oncogene. 23:1514-1521) performed in vitro suggests that AIF must interact with cyclophilin A (CypA) to form a proapoptotic DNA degradation complex. We addressed the question as to whether elimination of CypA may afford neuroprotection in vivo. 9-d-old wild-type (WT), CypA(+/-), or CypA(-/-) mice were subjected to unilateral cerebral HI. The infarct volume after HI was reduced by 47% (P = 0.0089) in CypA(-/-) mice compared with their WT littermates. Importantly, CypA(-/-) neurons failed to manifest the HI-induced nuclear translocation of AIF that was observed in WT neurons. Conversely, CypA accumulated within the nuclei of damaged neurons after HI, and this nuclear translocation of CypA was suppressed in AIF-deficient harlequin mice. Immunoprecipitation of AIF revealed coprecipitation of CypA, but only in injured, ischemic tissue. Surface plasmon resonance revealed direct molecular interactions between recombinant AIF and CypA. These data indicate that the lethal translocation of AIF to the nucleus requires interaction with CypA, suggesting a model in which two proteins that normally reside in separate cytoplasmic compartments acquire novel properties when moving together to the nucleus.


Asunto(s)
Transporte Activo de Núcleo Celular , Factor Inductor de la Apoptosis/metabolismo , Ciclofilina A/fisiología , Hipoxia-Isquemia Encefálica/metabolismo , Neuronas/metabolismo , Animales , Apoptosis , Encéfalo/patología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Estrés Oxidativo , Unión Proteica
5.
Front Oncol ; 12: 958155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387192

RESUMEN

Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.

6.
Trends Cell Biol ; 16(5): 264-72, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16621561

RESUMEN

Apoptosis-inducing factor (AIF) is a NADH oxidase with a local redox function that is essential for optimal oxidative phosphorylation and for an efficient anti-oxidant defense. The absence of AIF can cause neurodegeneration, skeleton muscle atrophy and dilated cardiomyopathy. In many models of apoptosis, AIF translocates to the nucleus, where it induces chromatin condensation and DNA degradation. The nuclear localization of AIF can be inhibited by blocking upstream signals of apoptosis. The contribution of AIF to cell death depends on the cell type and apoptotic insult and is only seen when caspases are inhibited or not activated. It is unknown to what extent and through which mechanisms AIF contributes to the induction of cell death. Here, we discuss recent progress in the quest to understand the contribution of AIF to life and death.


Asunto(s)
Factor Inductor de la Apoptosis/fisiología , Animales , Factor Inductor de la Apoptosis/metabolismo , Muerte Celular/fisiología , Supervivencia Celular/fisiología , Humanos , Ratones , Modelos Moleculares
7.
Antioxidants (Basel) ; 10(4)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921425

RESUMEN

Mitochondria are critical for several cellular functions as they control metabolism, cell physiology, and cell death. The mitochondrial proteome consists of around 1500 proteins, the vast majority of which (about 99% of them) are encoded by nuclear genes, with only 13 polypeptides in human cells encoded by mitochondrial DNA. Therefore, it is critical for all the mitochondrial proteins that are nuclear-encoded to be targeted precisely and sorted specifically to their site of action inside mitochondria. These processes of targeting and sorting are catalysed by protein translocases that operate in each one of the mitochondrial sub-compartments. The main protein import pathway for the intermembrane space (IMS) recognises proteins that are cysteine-rich, and it is the only import pathway that chemically modifies the imported precursors by introducing disulphide bonds to them. In this manner, the precursors are trapped in the IMS in a folded state. The key component of this pathway is Mia40 (called CHCHD4 in human cells), which itself contains cysteine motifs and is subject to redox regulation. In this review, we detail the basic components of the MIA pathway and the disulphide relay mechanism that underpins the electron transfer reaction along the oxidative folding mechanism. Then, we discuss the key protein modulators of this pathway and how they are interlinked to the small redox-active molecules that critically affect the redox state in the IMS. We present also evidence that the mitochondrial redox processes that are linked to iron-sulfur clusters biogenesis and calcium homeostasis coalesce in the IMS at the MIA machinery. The fact that the MIA machinery and several of its interactors and substrates are linked to a variety of common human diseases connected to mitochondrial dysfunction highlight the potential of redox processes in the IMS as a promising new target for developing new treatments for some of the most complex and devastating human diseases.

8.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165746, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32105825

RESUMEN

In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.


Asunto(s)
Factor Inductor de la Apoptosis/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Factor Inductor de la Apoptosis/metabolismo , Cisteína/genética , Cisteína/metabolismo , Disulfuros/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Mutación/genética , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Biochem Biophys Res Commun ; 390(1): 121-4, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19782043

RESUMEN

Neuroglobin (Ngb) is a hexacoordinate globin expressed in the nervous system of vertebrates, where it protects neurons against hypoxia. Ferrous Ngb has been proposed to favor cell survival by scavenging NO and/or reducing cytochrome c released into the cytosol during hypoxic stress. Both catalytic functions require an as yet unidentified Ngb-reductase activity. Such an activity was detected both in tissue homogenates of human brain and liver and in Escherichia coli extracts. Since NADH:flavorubredoxin oxidoreductase from E. coli, that was shown to reduce ferric Ngb, shares sequence similarity with the human apoptosis-inducing factor (AIF), AIF has been proposed by us as a candidate Ngb reductase. In this study, we tested this hypothesis and show that the Ngb-reductase activity of recombinant human AIF is negligible and hence incompatible with such a physiological function.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Globinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas/metabolismo , Animales , Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/genética , Encéfalo/enzimología , Escherichia coli , Globinas/química , Globinas/genética , Humanos , Hígado/enzimología , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuroglobina , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Cell Res ; 29(7): 579-591, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31133695

RESUMEN

Cancer is a major and still increasing cause of death in humans. Most cancer cells have a fundamentally different metabolic profile from that of normal tissue. This shift away from mitochondrial ATP synthesis via oxidative phosphorylation towards a high rate of glycolysis, termed Warburg effect, has long been recognized as a paradigmatic hallmark of cancer, supporting the increased biosynthetic demands of tumor cells. Here we show that deletion of apoptosis-inducing factor (AIF) in a KrasG12D-driven mouse lung cancer model resulted in a marked survival advantage, with delayed tumor onset and decreased malignant progression. Mechanistically, Aif deletion leads to oxidative phosphorylation (OXPHOS) deficiency and a switch in cellular metabolism towards glycolysis in non-transformed pneumocytes and at early stages of tumor development. Paradoxically, although Aif-deficient cells exhibited a metabolic Warburg profile, this bioenergetic change resulted in a growth disadvantage of KrasG12D-driven as well as Kras wild-type lung cancer cells. Cell-autonomous re-expression of both wild-type and mutant AIF (displaying an intact mitochondrial, but abrogated apoptotic function) in Aif-knockout KrasG12D mice restored OXPHOS and reduced animal survival to the same level as AIF wild-type mice. In patients with non-small cell lung cancer, high AIF expression was associated with poor prognosis. These data show that AIF-regulated mitochondrial respiration and OXPHOS drive the progression of lung cancer.


Asunto(s)
Factor Inductor de la Apoptosis/fisiología , Carcinogénesis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Glucólisis , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa
11.
Methods Mol Biol ; 445: 29-76, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18425442

RESUMEN

Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Animales , Muerte Celular/fisiología , Retículo Endoplásmico/ultraestructura , Células HeLa , Humanos , Lisosomas/ultraestructura , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias/ultraestructura , Fagosomas/ultraestructura
12.
Cell Death Dis ; 10(1): 3, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30584234

RESUMEN

Apoptosis-inducing factor (AIF) may contribute to neuronal cell death, and its influence is particularly prominent in the immature brain after hypoxia-ischemia (HI). A brain-specific AIF splice-isoform (AIF2) has recently been discovered, but has not yet been characterized at the genetic level. The aim of this study was to determine the functional and regulatory profile of AIF2 under physiological conditions and after HI in mice. We generated AIF2 knockout (KO) mice by removing the AIF2-specific exon and found that the relative expression of Aif1 mRNA increased in Aif2 KO mice and that this increase became even more pronounced as Aif2 KO mice aged compared to their wild-type (WT) littermates. Mitochondrial morphology and function, reproductive function, and behavior showed no differences between WT and Aif2 KO mice. However, lack of AIF2 enhanced brain injury in neonatal mice after HI compared to WT controls, and this effect was linked to increased oxidative stress but not to caspase-dependent or -independent apoptosis pathways. These results indicate that AIF2 deficiency exacerbates free radical production and HI-induced neonatal brain injury.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , Animales , Animales Recién Nacidos , Factor Inductor de la Apoptosis/genética , Asfixia Neonatal/genética , Asfixia Neonatal/patología , Modelos Animales de Enfermedad , Humanos , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/patología , Recién Nacido , Ratones , Ratones Noqueados , Mitocondrias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
13.
Cell Death Dis ; 9(7): 716, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915308

RESUMEN

Even though cell death modalities elicited by anticancer chemotherapy and radiotherapy have been extensively studied, the ability of anticancer treatments to induce non-cell-autonomous death has never been investigated. By means of multispectral imaging flow-cytometry-based technology, we analyzed the lethal fate of cancer cells that were treated with conventional anticancer agents and co-cultured with untreated cells, observing that anticancer agents can simultaneously trigger cell-autonomous and non-cell-autonomous death in treated and untreated cells. After ionizing radiation, oxaliplatin, or cisplatin treatment, fractions of treated cancer cell populations were eliminated through cell-autonomous death mechanisms, while other fractions of the treated cancer cells engulfed and killed neighboring cells through non-cell-autonomous processes, including cellular cannibalism. Under conditions of treatment with paclitaxel, non-cell-autonomous and cell-autonomous death were both detected in the treated cell population, while untreated neighboring cells exhibited features of apoptotic demise. The transcriptional activity of p53 tumor-suppressor protein contributed to the execution of cell-autonomous death, yet failed to affect the non-cell-autonomous death by cannibalism for the majority of tested anticancer agents, indicating that the induction of non-cell-autonomous death can occur under conditions in which cell-autonomous death was impaired. Altogether, these results reveal that chemotherapy and radiotherapy can induce both non-cell-autonomous and cell-autonomous death of cancer cells, highlighting the heterogeneity of cell death responses to anticancer treatments and the unsuspected potential contribution of non-cell-autonomous death to the global effects of anticancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Efecto Espectador , Rayos gamma , Animales , Antineoplásicos/uso terapéutico , Efecto Espectador/efectos de los fármacos , Efecto Espectador/efectos de la radiación , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Cisplatino/farmacología , Rayos gamma/uso terapéutico , Células HCT116 , Humanos , Células Jurkat , Células MCF-7 , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/radioterapia , Oxaliplatino/farmacología , Paclitaxel/farmacología , Radioterapia
14.
Biomed J ; 40(4): 200-211, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28918908

RESUMEN

Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.


Asunto(s)
Muerte Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Radiación Ionizante , Animales , Presentación de Antígeno/efectos de los fármacos , Humanos , FN-kappa B/metabolismo
15.
Front Immunol ; 8: 613, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28603525

RESUMEN

Radiation therapy is one of the cornerstones of cancer treatment. In tumor cells, exposure to ionizing radiation (IR) provokes DNA damages that trigger various forms of cell death such as apoptosis, necrosis, autophagic cell death, and mitotic catastrophe. IR can also induce cellular senescence that could serve as an additional antitumor barrier in a context-dependent manner. Moreover, accumulating evidence has demonstrated that IR interacts profoundly with tumor-infiltrating immune cells, which cooperatively drive treatment outcomes. Recent preclinical and clinical successes due to the combination of radiation therapy and immune checkpoint blockade have underscored the need for a better understanding of the interplay between radiation therapy and the immune system. In this review, we will present an overview of cell death modalities induced by IR, summarize the immunogenic properties of irradiated cancer cells, and discuss the biological consequences of IR on innate immune cell functions, with a particular attention on dendritic cells, macrophages, and NK cells. Finally, we will discuss their potential applications in cancer treatment.

16.
Oncotarget ; 8(34): 56210-56227, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915585

RESUMEN

Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi). Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in vitro in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.6 and 2.5 for A549 and H460. We found, by immunofluorescence staining, flow cytometry assays and western blotting, in abexinostat treated cells, increasing radio-induced caspase dependent apoptosis and persistent DNA double-strand breaks associated with decreased DNA damage signalling and repair. Interestingly, we demonstrated on nude mice xenografts that abexinostat potentiates tumor growth delay in combined modality treatments associating not only abexinostat and irradiation but also when adding cisplatin. Altogether, our data demonstrate in vitro and in vivo anti-tumor effect potentiation by abexinostat combined with irradiation in NSCLC. Moreover, our work suggests for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC.

17.
Cell Death Dis ; 8(5): e2781, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492551

RESUMEN

Mitochondria contribute to neonatal hypoxic-ischemic brain injury by releasing potentially toxic proteins into the cytosol. CHCHD4 is a mitochondrial intermembrane space protein that plays a major role in the import of intermembrane proteins and physically interacts with apoptosis-inducing factor (AIF). The purpose of this study was to investigate the impact of CHCHD4 haploinsufficiency on mitochondrial function and brain injury after cerebral hypoxia-ischemia (HI) in neonatal mice. CHCHD4+/- and wild-type littermate mouse pups were subjected to unilateral cerebral HI on postnatal day 9. CHCHD4 haploinsufficiency reduced insult-related AIF and superoxide dismutase 2 release from the mitochondria and reduced neuronal cell death. The total brain injury volume was reduced by 21.5% at 3 days and by 31.3% at 4 weeks after HI in CHCHD4+/- mice. However, CHCHD4 haploinsufficiency had no influence on mitochondrial biogenesis, fusion, or fission; neural stem cell proliferation; or neural progenitor cell differentiation. There were no significant changes in the expression or distribution of p53 protein or p53 pathway-related genes under physiological conditions or after HI. These results suggest that CHCHD4 haploinsufficiency afforded persistent neuroprotection related to reduced release of mitochondrial intermembrane space proteins. The CHCHD4-dependent import pathway might thus be a potential therapeutic target for preventing or treating neonatal brain injury.


Asunto(s)
Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Haploinsuficiencia , Proteínas Mitocondriales/metabolismo , Animales , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Mitocondriales/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
18.
Cell Death Differ ; 24(9): 1632-1644, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28574504

RESUMEN

Although tumor-associated macrophages have been extensively studied in the control of response to radiotherapy, the molecular mechanisms involved in the ionizing radiation-mediated activation of macrophages remain elusive. Here we show that ionizing radiation induces the expression of interferon regulatory factor 5 (IRF5) promoting thus macrophage activation toward a pro-inflammatory phenotype. We reveal that the activation of the ataxia telangiectasia mutated (ATM) kinase is required for ionizing radiation-elicited macrophage activation, but also for macrophage reprogramming after treatments with γ-interferon, lipopolysaccharide or chemotherapeutic agent (such as cisplatin), underscoring the fact that the kinase ATM plays a central role during macrophage phenotypic switching toward a pro-inflammatory phenotype through the regulation of mRNA level and post-translational modifications of IRF5. We further demonstrate that NADPH oxidase 2 (NOX2)-dependent ROS production is upstream to ATM activation and is essential during this process. We also report that the inhibition of any component of this signaling pathway (NOX2, ROS and ATM) impairs pro-inflammatory activation of macrophages and predicts a poor tumor response to preoperative radiotherapy in locally advanced rectal cancer. Altogether, our results identify a novel signaling pathway involved in macrophage activation that may enhance the effectiveness of radiotherapy through the reprogramming of tumor-infiltrating macrophages.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Activación de Macrófagos/efectos de la radiación , Macrófagos/metabolismo , Animales , Línea Celular , Citometría de Flujo , Humanos , Interferón gamma/metabolismo , Ratones , Microscopía Fluorescente , Fosforilación/efectos de la radiación , Procesamiento Proteico-Postraduccional , Células RAW 264.7 , Transducción de Señal
19.
Mol Cell Oncol ; 3(2): e1074332, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27308594

RESUMEN

During the evolution from yeast to mammals the Mia40 protein, the regulator of the redox-sensitive mitochondrial intermembrane space import machinery, has lost its membrane-anchorage segment to become CHCHD4, which interacts with the flavoprotein apoptosis-inducing factor (AIF). Our results establish CHCHD4 as the missing link between AIF deficiency and dysfunctional biogenesis of respiratory chain complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA