Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(8): 086704, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898116

RESUMEN

We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations in the weakly coupled spin-1/2 Heisenberg layers of the molecular-based bulk material [Cu(pz)_{2}(2-HOpy)_{2}](PF_{6})_{2}. At zero field, a transition to long-range order occurs at 1.38 K, caused by a weak intrinsic easy-plane anisotropy and an interlayer exchange of J^{'}/k_{B}≈1 mK. Because of the moderate intralayer exchange coupling of J/k_{B}=6.8 K, the application of laboratory magnetic fields induces a substantial XY anisotropy of the spin correlations. Crucially, this provides a significant BKT regime, as the tiny interlayer exchange J^{'} only induces 3D correlations upon close approach to the BKT transition with its exponential growth in the spin-correlation length. We employ nuclear magnetic resonance measurements to probe the spin correlations that determine the critical temperatures of the BKT transition as well as that of the onset of long-range order. Further, we perform stochastic series expansion quantum Monte Carlo simulations based on the experimentally determined model parameters. Finite-size scaling of the in-plane spin stiffness yields excellent agreement of critical temperatures between theory and experiment, providing clear evidence that the nonmonotonic magnetic phase diagram of [Cu(pz)_{2}(2-HOpy)_{2}](PF_{6})_{2} is determined by the field-tuned XY anisotropy and the concomitant BKT physics.

2.
Phys Rev Lett ; 128(9): 097201, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302826

RESUMEN

We investigate the magnetic excitations of elemental gadolinium (Gd) using inelastic neutron scattering, showing that Gd is a Dirac magnon material with nodal lines at K and nodal planes at half integer ℓ. We find an anisotropic intensity winding around the K-point Dirac magnon cone, which is interpreted to indicate Berry phase physics. Using linear spin wave theory calculations, we show the nodal lines have nontrivial Berry phases, and topological surface modes. We also discuss the origin of the nodal plane in terms of a screw-axis symmetry, and introduce a topological invariant characterizing its presence and effect on the scattering intensity. Together, these results indicate a highly nontrivial topology, which is generic to hexagonal close packed ferromagnets. We discuss potential implications for other such systems.

3.
Phys Rev Lett ; 127(12): 127201, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597102

RESUMEN

We exhibit an exactly solvable example of a SU(2) symmetric Majorana spin liquid phase, in which quenched disorder leads to random-singlet phenomenology of emergent magnetic moments. More precisely, we argue that a strong-disorder fixed point controls the low temperature susceptibility χ(T) of an exactly solvable S=1/2 model on the decorated honeycomb lattice with vacancy and/or bond disorder, leading to χ(T)=C/T+DT^{α(T)-1}, where α(T)→0 slowly as the temperature T→0. The first term is a Curie tail that represents the emergent response of vacancy-induced spin textures spread over many unit cells: it is an intrinsic feature of the site-diluted system, rather than an extraneous effect arising from isolated free spins. The second term, common to both vacancy and bond disorder [with different α(T) in the two cases] is the response of a random singlet phase, familiar from random antiferromagnetic spin chains and the analogous regime in phosphorus-doped silicon (Si:P).

4.
Phys Rev Lett ; 122(4): 040606, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768332

RESUMEN

We consider spinless fermions on a finite one-dimensional lattice, interacting via nearest-neighbor repulsion and subject to a strong electric field. In the noninteracting case, due to Wannier-Stark localization, the single-particle wave functions are exponentially localized even though the model has no quenched disorder. We show that this system remains localized in the presence of interactions and exhibits physics analogous to models of conventional many-body localization (MBL). In particular, the entanglement entropy grows logarithmically with time after a quench, albeit with a slightly different functional form from the MBL case, and the level statistics of the many-body energy spectrum are Poissonian. We moreover predict that a quench experiment starting from a charge-density wave state would show results similar to those of Schreiber et al. [Science 349, 842 (2015)SCIEAS0036-807510.1126/science.aaa7432].

5.
Nat Mater ; 15(7): 733-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27043779

RESUMEN

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.


Asunto(s)
Campos Magnéticos , Imanes , Modelos Químicos , Teoría Cuántica , Soluciones/química , Marcadores de Spin , Frío , Simulación por Computador , Dosis de Radiación
6.
Phys Rev Lett ; 118(4): 047201, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28186783

RESUMEN

Quantum spin systems are by now known to exhibit a large number of different classes of spin liquid phases. By contrast, for classical Heisenberg models, only one kind of fractionalized spin liquid phase, the so-called Coulomb or U(1) spin liquid, has until recently been identified: This exhibits algebraic spin correlations and impurity moments, "orphan spins," whose size is a fraction of that of the underlying microscopic degrees of freedom. Here, we present two Heisenberg models exhibiting fractionalization in combination with exponentially decaying correlations. These can be thought of as a classical continuous spin version of a Z_{2} spin liquid. Our work suggests a systematic search and classification of classical spin liquids as a worthwhile endeavor.

7.
Phys Rev Lett ; 119(17): 176601, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29219477

RESUMEN

We study the time evolution after a quantum quench in a family of models whose degrees of freedom are fermions coupled to spins, where quenched disorder appears neither in the Hamiltonian parameters nor in the initial state. Focusing on the behavior of entanglement, both spatial and between subsystems, we show that the model supports a state exhibiting combined area and volume-law entanglement, being characteristic of the quantum disentangled liquid. This behavior appears for one set of variables, which is related via a duality mapping to another set, where this structure is absent. Upon adding density interactions between the fermions, we identify an exact mapping to an XXZ spin chain in a random binary magnetic field, thereby establishing the existence of many-body localization with its logarithmic entanglement growth in a fully disorder-free system.

8.
Phys Rev Lett ; 118(26): 266601, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28707931

RESUMEN

The venerable phenomena of Anderson localization, along with the much more recent many-body localization, both depend crucially on the presence of disorder. The latter enters either in the form of quenched disorder in the parameters of the Hamiltonian, or through a special choice of a disordered initial state. Here, we present a model with localization arising in a very simple, completely translationally invariant quantum model, with only local interactions between spins and fermions. By identifying an extensive set of conserved quantities, we show that the system generates purely dynamically its own disorder, which gives rise to localization of fermionic degrees of freedom. Our work gives an answer to a decades old question whether quenched disorder is a necessary condition for localization. It also offers new insights into the physics of many-body localization, lattice gauge theories, and quantum disentangled liquids.

9.
Phys Rev Lett ; 117(16): 167201, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27792369

RESUMEN

We show that the honeycomb Heisenberg antiferromagnet with J_{1}/2=J_{2}=J_{3}, where J_{1}, J_{2}, and J_{3} are first-, second-, and third-neighbor couplings, respectively, forms a classical spin liquid with pinch-point singularities in the structure factor at the Brillouin zone corners. Upon dilution with nonmagnetic ions, fractionalized degrees of freedom carrying 1/3 of the free moment emerge. Their effective description in the limit of low temperature is that of spins randomly located on a triangular lattice, with a frustrated sublattice-sensitive interaction of long-ranged logarithmic form. The XY version of this magnet exhibits nematic thermal order by disorder. This comes with a clear experimental diagnostic in neutron scattering, which turns out to apply also to the case of the celebrated planar order by disorder of the kagome Heisenberg antiferromagnet.

10.
Phys Rev Lett ; 114(24): 247207, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26197007

RESUMEN

It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.

11.
Phys Rev Lett ; 115(11): 116803, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26406848

RESUMEN

We study a bosonic model with correlated hopping on a honeycomb lattice, and show that its ground state is a bosonic integer quantum Hall (BIQH) phase, a prominent example of a symmetry-protected topological (SPT) phase. By using the infinite density matrix renormalization group method, we establish the existence of the BIQH phase by providing clear numerical evidence: (i) a quantized Hall conductance with |σ_{xy}|=2, (ii) two counterpropagating gapless edge modes. Our simple model is an example of a novel class of systems that can stabilize SPT phases protected by a continuous symmetry on lattices and opens up new possibilities for the experimental realization of these exotic phases.

12.
Phys Rev Lett ; 115(26): 267209, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26765025

RESUMEN

While the existence of a chiral spin liquid (CSL) on a class of spin-1/2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U(1) symmetry protected topological (SPT) phase, which upon promoting its U(1) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

13.
Phys Rev Lett ; 115(3): 037201, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26230822

RESUMEN

The Wien effect is a model process for field-induced charge creation. Here it is derived for a nonelectrical system: the spin ice "magnetolyte"-a unique system showing perfect charge symmetry. An entropic reaction field, analogous to the Jaccard field in ice, opposes direct current, but a frequency window exists in which the Wien effect for magnetolyte and electrolyte are indistinguishable. The universal enhancement of monopole density speeds up the magnetization dynamics, which manifests in the nonlinear, nonequilibrium ac susceptibility. This is a rare instance where such effects may be calculated, providing new insights for electrolytes. Experimental predictions are made for Dy2Ti2O7 spin ice.

14.
Phys Rev Lett ; 114(1): 016806, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615496

RESUMEN

We show that, quite generically, a [111] slab of spin-orbit coupled pyrochlore lattice exhibits surface states whose constant energy curves take the shape of Fermi arcs, localized to different surfaces depending on their quasimomentum. Remarkably, these persist independently of the existence of Weyl points in the bulk. Considering interacting electrons in slabs of finite thickness, we find a plethora of known fractional Chern insulating phases, to which we add the discovery of a new higher Chern number state which is likely a generalization of the Moore-Read fermionic fractional quantum Hall state. By contrast, in the three-dimensional limit, we argue for the absence of gapped states of the flat surface band due to a topologically protected coupling of the surface to gapless states in the bulk. We comment on generalizations as well as experimental perspectives in thin slabs of pyrochlore iridates.

15.
Nat Mater ; 12(11): 1033-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23934036

RESUMEN

The second Wien effect describes the nonlinear, non-equilibrium response of a weak electrolyte in moderate to high electric fields. Onsager's 1934 electrodiffusion theory, along with various extensions, has been invoked for systems and phenomena as diverse as solar cells, surfactant solutions, water splitting reactions, dielectric liquids, electrohydrodynamic flow, water and ice physics, electrical double layers, non-ohmic conduction in semiconductors and oxide glasses, biochemical nerve response and magnetic monopoles in spin ice. In view of this technological importance and the experimental ubiquity of such phenomena, it is surprising that Onsager's Wien effect has never been studied by numerical simulation. Here we present simulations of a lattice Coulomb gas, treating the widely applicable case of a double equilibrium for free charge generation. We obtain detailed characterization of the Wien effect and confirm the accuracy of the analytical theories as regards the field evolution of the free charge density and correlations. We also demonstrate that simulations can uncover further corrections, such as how the field-dependent conductivity may be influenced by details of microscopic dynamics. We conclude that lattice simulation offers a powerful means by which to model and investigate system-specific corrections to the Onsager theory, and thus constitutes a valuable tool for detailed theoretical studies of the numerous practical applications of the second Wien effect.

16.
Phys Rev Lett ; 113(18): 187201, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25396391

RESUMEN

We show how Raman spectroscopy can serve as a valuable tool for diagnosing quantum spin liquids (QSL). We find that the Raman response of the gapless QSL of the Kitaev-Heisenberg model exhibits signatures of spin fractionalization into Majorana fermions, which give rise to a broad signal reflecting their density of states, and Z(2) gauge fluxes, which also contribute a sharp feature. We discuss the current experimental situation and explore more generally the effect of breaking the integrability on response functions of Kitaev spin liquids.

17.
Mol Psychiatry ; 18(7): 788-98, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22889921

RESUMEN

Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1465 cases, 5557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9657 X-chromosome single nucleotide polymorphisms (SNPs). Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two P-values were located within DLGAP1 (P=2.49 × 10(-6) and P=3.44 × 10(-6)), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a P-value=3.84 × 10(-8). However, when trios were meta-analyzed with the case-control samples, the P-value for this variant was 3.62 × 10(-5), losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation QTLs (P<0.001) and frontal lobe expression quantitative trait loci (eQTLs) (P=0.001) was observed within the top-ranked SNPs (P<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Proteínas del Tejido Nervioso/genética , Trastorno Obsesivo Compulsivo/genética , Estudios de Casos y Controles , Lóbulo Frontal/metabolismo , Humanos , Padres , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Proteínas Asociadas a SAP90-PSD95 , Población Blanca/genética
18.
Nature ; 451(7174): 42-5, 2008 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-18172493

RESUMEN

Electrically charged particles, such as the electron, are ubiquitous. In contrast, no elementary particles with a net magnetic charge have ever been observed, despite intensive and prolonged searches (see ref. 1 for example). We pursue an alternative strategy, namely that of realizing them not as elementary but rather as emergent particles-that is, as manifestations of the correlations present in a strongly interacting many-body system. The most prominent examples of emergent quasiparticles are the ones with fractional electric charge e/3 in quantum Hall physics. Here we propose that magnetic monopoles emerge in a class of exotic magnets known collectively as spin ice: the dipole moment of the underlying electronic degrees of freedom fractionalises into monopoles. This would account for a mysterious phase transition observed experimentally in spin ice in a magnetic field, which is a liquid-gas transition of the magnetic monopoles. These monopoles can also be detected by other means, for example, in an experiment modelled after the Stanford magnetic monopole search.

19.
Phys Rev Lett ; 111(3): 036602, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23909347

RESUMEN

We study the anomalous Hall effect due to noncoplanar magnetism on a pyrochlore structure. We focus on the frustration-induced spatial inhomogeneity of different magnetic low-temperature regimes, between which one can efficiently tune using an external magnetic field. We incorporate nonmagnetic scattering on a phenomenological level so that we can distinguish between the effects of short-range correlations and short-range coherence. We obtain a Hall conductivity (σ(H)) as a function of field strength and direction which compares well to the experimental data of Pr(2)Ir(2)O(7). In particular, we show that the observed peak in σ(H) for H[parallel][111] signals the crossover from zero-field spin ice to kagome ice.

20.
Phys Rev Lett ; 110(7): 077201, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166398

RESUMEN

Ever since the experiments which founded the field of highly frustrated magnetism, the kagome Heisenberg antiferromagnet has been the archetypical setting for the study of fluctuation induced exotic ordering. To this day the nature of its classical low-temperature state has remained a mystery: the nonlinear nature of the fluctuations around the exponentially numerous harmonically degenerate ground states has not permitted a controlled theory, while its complex energy landscape has precluded numerical simulations at low temperature, T. Here we present an efficient Monte Carlo algorithm which removes the latter obstacle. Our simulations detect a low-temperature regime in which correlations asymptote to a remarkably small value as T→0. Feeding these results into an effective model and analyzing the results in the framework of an appropriate field theory implies the presence of long-range dipolar spin order with a tripled unit cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA