Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Prostate ; 72(9): 931-7, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22025306

RESUMEN

BACKGROUND: Proliferative inflammatory atrophy (PIA) has been proposed as a potential precursor for prostate cancer. The precise molecular abnormalities in prostatic atrophy compared to high-grade prostatic intraepithelial neoplasia (HGPIN) and carcinoma have not been fully defined. METHODS: We utilized laser capture microdissection and microarray analysis to characterize cells of PIA, HGPIN, invasive prostatic carcinoma, and non-atrophic benign prostatic epithelium (NABE). Cytoglobin was selected for immunohistochemistry (IHC) validation. IHC stains were evaluated for proportion of positive glands, and intensity of cytoglobin staining. An immunoreactive score (IR score) was determined as the product of the percentage of positive staining and intensity. RESULTS: Microarray analysis revealed probe sets that separated the microdissected cell types. Several genes showed overlapping expression patterns between PIA and PIN, and HGPIN and invasive carcinoma. Cytoglobin protein expression was detected in 57/93 (61%) of NABE and BPH cases, 92/93 atrophy (99%), 3/34 (9%) of PIN, and 23/61 carcinoma (37%) samples. The highest IHC scores were calculated for atrophy foci. A subset (33%) of atrophy cases showed the same low-cytoglobin expression level as PIN and carcinoma. CONCLUSIONS: Prostatic epithelium can be stratified into normal, atrophic, PIN, and invasive carcinoma categories based on differential genetic signatures. Cytoglobin, a protein that can be induced in response to oxidative stress, was elevated in most atrophy foci, suggesting hypoxic, and/or oxidative damage. The lower level of cytoglobin seen in neoplastic cells and 33% of atrophy foci may indicate a shared susceptibility to oxidative damage for this subset of atrophy cases and prostatic neoplasia.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Globinas/biosíntesis , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Adenocarcinoma/metabolismo , Atrofia , Hipoxia de la Célula/fisiología , Citoglobina , Globinas/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Masculino , Estrés Oxidativo/fisiología , Neoplasias de la Próstata/metabolismo
2.
J Biol Chem ; 282(35): 25790-800, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17602165

RESUMEN

Transcription factor haploinsufficiency plays a role in the pathogenesis of many diseases, including cancer. In a mouse model of prostate tumor initiation, loss of a single allele of the tumor suppressor Nkx3.1 stochastically inactivates the expression of a class of dosage-sensitive target genes. Here we show that dosage sensitivity is associated with the differential histone H3/H4 acetylation states of Nkx3.1 target genes. When histone acetylation is induced in Nkx3.1+/- mouse prostates with the histone deacetylase inhibitor Trichostatin A, Nkx3.1 can bind to and reactivate the expression of dosage-sensitive target genes. We incorporated our findings into a mathematical model that entails the association of Nkx3.1 with histone acetyltransferase activity. Subsequent experiments indicate that Nkx3.1 associates with and recruits the histone acetyltransferase p300/CREB-binding protein-associated factor to chromatin. Finally, we demonstrate a role for the dosage-sensitive target gene intelectin/omentin in suppressing prostate tumorigenicity. Our results reveal how the interplay between transcription factor dosage and chromatin affects target gene expression in tumor initiation.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Ensamble y Desensamble de Cromatina , Dosificación de Gen , Proteínas de Homeodominio/biosíntesis , Pérdida de Heterocigocidad , Modelos Biológicos , Neoplasias de la Próstata/metabolismo , Factores de Transcripción/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Acetilación , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Cromatina/genética , Cromatina/metabolismo , Cromatina/patología , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Ácidos Hidroxámicos/farmacología , Lectinas/biosíntesis , Lectinas/genética , Pérdida de Heterocigocidad/efectos de los fármacos , Pérdida de Heterocigocidad/genética , Masculino , Ratones , Ratones Mutantes , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA