RESUMEN
Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.
Asunto(s)
Individualidad , Dolor , Humanos , Dolor/genéticaRESUMEN
Best practices in preclinical algesiometry (pain behaviour testing) have shifted over the past decade as a result of technological advancements, the continued dearth of translational progress and the emphasis that funding institutions and journals have placed on rigour and reproducibility. Here we describe the changing trends in research methods by analysing the methods reported in preclinical pain publications from the past 40 years, with a focus on the last 5 years. We also discuss how the status quo may be hampering translational success. This discussion is centred on four fundamental decisions that apply to every pain behaviour experiment: choice of subject (model organism), choice of assay (pain-inducing injury), laboratory environment and choice of outcome measures. Finally, we discuss how human tissues, which are increasingly accessible, can be used to validate the translatability of targets and mechanisms identified in animal pain models.
Asunto(s)
Alternativas a las Pruebas en Animales , Modelos Animales de Enfermedad , Dimensión del Dolor/tendencias , Dolor/diagnóstico , Animales , Humanos , Modelos Animales , Dimensión del Dolor/métodosRESUMEN
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Asunto(s)
Manejo del Dolor , Percepción del Dolor/fisiología , Dolor , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Dolor/genética , Dolor/inmunología , Dolor/fisiopatología , Dolor/psicologíaRESUMEN
BACKGROUND: Chronic post-surgical pain (CPSP) significantly impacts patients' recovery and quality of life. Although environmental risk factors are well-established, genetic risk remains less understood. METHODS: A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on 1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell types. RESULTS: We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at â¼39%, indicating a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in the footpad, lymph nodes, and dorsal root ganglia. CONCLUSIONS: These findings suggest a key protective role for the adaptive immune system in the development of chronic post-surgical pain.
Asunto(s)
Linfocitos B , Dolor Crónico , Estudio de Asociación del Genoma Completo , Dolor Postoperatorio , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos B/inmunología , Dolor Crónico/genética , Modelos Animales de Enfermedad , Hiperalgesia/genética , Ratones Noqueados , Dolor Postoperatorio/genética , Polimorfismo de Nucleótido SimpleRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Chronic pain is often present at more than one anatomical location, leading to chronic overlapping pain conditions. Whether chronic overlapping pain conditions represent a distinct pathophysiology from the occurrence of pain at only one site is unknown. Using genome-wide approaches, we compared genetic determinants of chronic single-site versus multisite pain in the UK Biobank. We found that different genetic signals underlie chronic single-site and multisite pain with much stronger genetic contributions for the latter. Among 23 loci associated with multisite pain, nine loci replicated in the HUNT cohort, with the DCC netrin 1 receptor (DCC) as the top gene. Functional genomics identified axonogenesis in brain tissues as the major contributing pathway to chronic multisite pain. Finally, multimodal structural brain imaging analysis showed that DCC is most strongly expressed in subcortical limbic regions and is associated with alterations in the uncinate fasciculus microstructure, suggesting that DCC-dependent axonogenesis may contribute to chronic overlapping pain conditions via corticolimbic circuits.
Asunto(s)
Dolor Crónico , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Enfermedad Crónica , Dolor Crónico/genética , Humanos , Netrina-1 , Neurogénesis/genéticaRESUMEN
In the version of this Comment originally published, the authors omitted a funding source. Grant 5 P50 DA039841 (to E.J.C.) from the US National Institute on Drug Abuse has been added to the Acknowledgements in the HTML and PDF versions of the paper.
RESUMEN
Existing assays of social interaction are suboptimal, and none measures propinquity, the tendency of rodents to maintain close physical proximity. These assays are ubiquitously performed using inbred mouse strains and mutations placed on inbred genetic backgrounds. We developed the automatable tube cooccupancy test (TCOT) based on propinquity, the tendency of freely mobile rodents to maintain close physical proximity, and assessed TCOT behavior on a variety of genotypes and social and environmental conditions. In outbred mice and rats, familiarity determined willingness to cooccupy the tube, with siblings and/or cagemates of both sexes exhibiting higher cooccupancy behavior than strangers. Subsequent testing using multiple genotypes revealed that inbred strain siblings do not cooccupy at higher rates than strangers, in marked contrast to both outbred and rederived wild mice. Mutant mouse strains with "autistic-like" phenotypes (Fmr1-/y and Eif4e Ser209Ala) displayed significantly decreased cooccupancy.
Asunto(s)
Endogamia , Conducta Social , Animales , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos , Ratas Sprague-Dawley , Estrés PsicológicoRESUMEN
A response to environmental stress is critical to alleviate cellular injury and maintain cellular homeostasis. Eukaryotic initiation factor 2 (eIF2) is a key integrator of cellular stress responses and an important regulator of mRNA translation. Diverse stress signals lead to the phosphorylation of the α subunit of eIF2 (Ser51), resulting in inhibition of global protein synthesis while promoting expression of proteins that mediate cell adaptation to stress. Here we report that eIF2α is instrumental in the control of noxious heat sensation. Mice with decreased eIF2α phosphorylation (eIF2α+/S51A) exhibit reduced responses to noxious heat. Pharmacological attenuation of eIF2α phosphorylation decreases thermal, but not mechanical, pain sensitivity, whereas increasing eIF2α phosphorylation has the opposite effect on thermal nociception. The impact of eIF2α phosphorylation (p-eIF2α) on thermal thresholds is dependent on the transient receptor potential vanilloid 1. Moreover, we show that induction of eIF2α phosphorylation in primary sensory neurons in a chronic inflammation pain model contributes to thermal hypersensitivity. Our results demonstrate that the cellular stress response pathway, mediated via p-eIF2α, represents a mechanism that could be used to alleviate pathological heat sensation.
Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Nocicepción , Temperatura , Animales , Conducta Animal , Biomarcadores , Calcio/metabolismo , Células Cultivadas , Factor 2 Eucariótico de Iniciación/genética , Ganglios Espinales/metabolismo , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , Imagen Molecular , Neuronas/metabolismo , Dolor/etiología , Dolor/metabolismo , Umbral del Dolor , Fosforilación , Transducción de Señal , Médula Espinal/metabolismo , Estrés Fisiológico , Canales Catiónicos TRPV/metabolismo , eIF-2 Quinasa/metabolismoRESUMEN
It has been reported consistently that many female chronic pain sufferers have an attenuation of symptoms during pregnancy. Rats display increased pain tolerance during pregnancy due to an increase in opioid receptors in the spinal cord. Past studies did not consider the role of non-neuronal cells, which are now known to play an important role in chronic pain processing. Using an inflammatory (complete Freund's adjuvant) or neuropathic (spared nerve injury) model of persistent pain, we observed that young adult female mice in early pregnancy switch from a microglia-independent to a microglia-dependent pain hypersensitivity mechanism. During late pregnancy, female mice show no evidence of chronic pain whatsoever. This pregnancy-related analgesia is reversible by intrathecal administration of naloxone, suggesting an opioid-mediated mechanism; pharmacological and genetic data suggest the importance of δ-opioid receptors. We also observe that T-cell-deficient (nude and Rag1-null mutant) pregnant mice do not exhibit pregnancy analgesia, which can be rescued with the adoptive transfer of CD4+ or CD8+ T cells from late-pregnant wild-type mice. These results suggest that T cells are a mediator of the opioid analgesia exhibited during pregnancy.SIGNIFICANCE STATEMENT Chronic pain symptoms often subside during pregnancy. This pregnancy-related analgesia has been demonstrated for acute pain in rats. Here, we show that pregnancy analgesia can produce a complete cessation of chronic pain behaviors in mice. We show that the phenomenon is dependent on pregnancy hormones (estrogen and progesterone), δ-opioid receptors, and T cells of the adaptive immune system. These findings add to the recent but growing evidence of sex-specific T-cell involvement in chronic pain processing.
Asunto(s)
Analgesia , Dolor Crónico/fisiopatología , Preñez/fisiología , Linfocitos T , Traslado Adoptivo , Animales , Dolor Crónico/inducido químicamente , Femenino , Hiperalgesia/fisiopatología , Ratones , Ratones Endogámicos ICR , Ratones Desnudos , Microglía/inmunología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Neuralgia/fisiopatología , Ovariectomía , Embarazo , Receptores Opioides delta/efectos de los fármacos , Linfocitos T/inmunologíaRESUMEN
Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4ES209A ). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF- and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2-/- mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2-/- mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a debilitating disease affecting approximately one in three Americans. Chronic pain is thought to be driven by changes in the excitability of peripheral nociceptive neurons, but the precise mechanisms controlling these changes are not elucidated. Emerging evidence demonstrates that mRNA translation regulation pathways are key factors in changes in nociceptor excitability. Our work demonstrates that a single phosphorylation site on the 5' cap-binding protein eIF4E is a critical mechanism for changes in nociceptor excitability that drive the development of chronic pain. We reveal a new mechanistic target for the development of a chronic pain state and propose that targeting the upstream kinase, MAPK interacting kinase 1/2, could be used as a therapeutic approach for chronic pain.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Dolor Crónico/fisiopatología , Factor 4E Eucariótico de Iniciación/metabolismo , Ganglios Espinales/fisiopatología , Hiperalgesia/fisiopatología , Plasticidad Neuronal , Nocicepción , Animales , Dolor Crónico/etiología , ATPasas Transportadoras de Cobre , Progresión de la Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor Nociceptivo/etiología , Dolor Nociceptivo/fisiopatología , Células Receptoras Sensoriales/metabolismo , Transducción de SeñalRESUMEN
Grimace scales quantify characteristic facial expressions associated with spontaneous pain in rodents and other mammals. However, these scales have not been widely adopted largely because of the time and effort required for highly trained humans to manually score the images. Convoluted neural networks were recently developed that distinguish individual humans and objects in images. Here, we trained one of these networks, the InceptionV3 convolutional neural net, with a large set of human-scored mouse images. Output consists of a binary pain/no-pain assessment and a confidence score. Our automated Mouse Grimace Scale integrates these two outputs and is highly accurate (94%) at assessing the presence of pain in mice across different experimental assays. In addition, we used a novel set of "pain" and "no pain" images to show that automated Mouse Grimace Scale scores are highly correlated with human scores (Pearson's r = 0.75). Moreover, the automated Mouse Grimace Scale classified a greater proportion of images as "pain" following laparotomy surgery when compared to animals receiving a sham surgery or a post-surgical analgesic. Together, these findings suggest that the automated Mouse Grimace Scale can eliminate the need for tedious human scoring of images and provide an objective and rapid way to quantify spontaneous pain and pain relief in mice.
Asunto(s)
Expresión Facial , Red Nerviosa/fisiopatología , Dolor/diagnóstico , Dolor/fisiopatología , Animales , Automatización , Humanos , Ratones , Cuidados Posoperatorios , Grabación en VideoAsunto(s)
Investigación Biomédica/normas , Edición/normas , Proyectos de Investigación , Informe de Investigación/normas , Animales , Ensayos Clínicos como Asunto/métodos , Ensayos Clínicos como Asunto/normas , Creatividad , Eficiencia , Humanos , Ratones , Ratas , Reproducibilidad de los ResultadosRESUMEN
Differences in the prevalence of chronic pain in women vs. men are well known, and decades of laboratory experimentation have demonstrated that women are more sensitive to pain than are men. Attention has thus shifted to investigating mechanisms underlying such differences. Recent evidence suggests that neuroimmune modulation of pain may represent an important cause of sex differences. The current Review examines the evidence for gonadal hormone modulation of the immune system, immune system modulation of pain, and interactions that might help to explain sex differences in pain. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Encefalitis/inmunología , Sistema Inmunológico/fisiología , Dolor/inmunología , Caracteres Sexuales , Animales , Encefalitis/metabolismo , Encefalitis/fisiopatología , Hormonas Gonadales/farmacología , Humanos , Sistema Inmunológico/efectos de los fármacos , Dolor/fisiopatologíaRESUMEN
We found that exposure of mice and rats to male but not female experimenters produces pain inhibition. Male-related stimuli induced a robust physiological stress response that results in stress-induced analgesia. This effect could be replicated with T-shirts worn by men, bedding material from gonadally intact and unfamiliar male mammals, and presentation of compounds secreted from the human axilla. Experimenter sex can thus affect apparent baseline responses in behavioral testing.
Asunto(s)
Analgesia , Percepción Olfatoria/fisiología , Dolor/fisiopatología , Estrés Fisiológico , Animales , Femenino , Humanos , Masculino , Ratones , Dolor/psicología , Dimensión del Dolor , RatasRESUMEN
A clear majority of patients with chronic pain are women; however, it has been surprisingly difficult to determine whether this sex bias corresponds to actual sex differences in pain sensitivity. A survey of the currently available epidemiological and laboratory data indicates that the evidence for clinical and experimental sex differences in pain is overwhelming. Various explanations for this phenomenon have been given, ranging from experiential and sociocultural differences in pain experience between men and women to hormonally and genetically driven sex differences in brain neurochemistry.
Asunto(s)
Encéfalo/metabolismo , Umbral del Dolor , Dolor , Caracteres Sexuales , Encéfalo/patología , Femenino , Humanos , Masculino , Dolor/patología , Dolor/fisiopatología , Dolor/psicologíaRESUMEN
Preclinical researchers confront two overarching agendas related to drug development: selecting interventions amid a vast field of candidates, and producing rigorous evidence of clinical promise for a small number of interventions. We suggest that each challenge is best met by two different, complementary modes of investigation. In the first (exploratory investigation), researchers should aim at generating robust pathophysiological theories of disease. In the second (confirmatory investigation), researchers should aim at demonstrating strong and reproducible treatment effects in relevant animal models. Each mode entails different study designs, confronts different validity threats, and supports different kinds of inferences. Research policies should seek to disentangle the two modes and leverage their complementarity. In particular, policies should discourage the common use of exploratory studies to support confirmatory inferences, promote a greater volume of confirmatory investigation, and customize design and reporting guidelines for each mode.