Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Dev Biol ; 492: 59-70, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36179879

RESUMEN

The IRE1α-XBP1s signaling branch of the unfolded protein response is a well-characterized survival pathway that allows cells to adapt to and resolve endoplasmic reticulum stress. Recent data has broadened our understanding of IRE1α-XBP1s signaling beyond a stress response and revealed a physiological mechanism required for the differentiation and maturation of a wide variety of cell types. Here we provide evidence that the IRE1α-XBP1s signaling pathway is required for the proliferation and maturation of basal keratinocytes in the mouse tongue and esophageal epithelium. Mice with conditional targeted deletion of either Ire1α or Xbp1 in keratin 14 expressing basal keratinocytes displayed severe thinning of the lingual and esophageal mucosa that rendered them unable to eat. In IRE1α null epithelium harvested at an earlier timepoint, genes regulating cell proliferation, cell-cell adhesion, and keratinization were significantly downregulated; indirect immunofluorescence revealed fewer proliferating basal keratinocytes, downregulation of E-cadherin, and thinning of the loricrin-positive granular and cornified layers. The number of Tp63-positive basal keratinocytes was reduced in the absence of IRE1α, and expression of the Wnt pathway transcription factor LEF1, which is required for the proliferation of lingual transit amplifying cells, was also significantly downregulated at the transcript and protein level. Together these results reveal an essential role for IRE1α-XBP1s in the maintenance of the stratified squamous epithelial tissue of the tongue and esophagus.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada/genética , Estrés del Retículo Endoplásmico/genética , Esófago , Lengua/metabolismo
2.
Mol Carcinog ; 61(10): 958-971, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35975910

RESUMEN

Transforming Growth Factor ß1 (TGFß1) is a critical regulator of tumor progression in response to HRas. Recently, TGFß1 has been shown to trigger ER stress in many disease models; however, its role in oncogene-induced ER stress is unclear. Oncogenic HRas induces the unfolded protein response (UPR) predominantly via the Inositol-requiring enzyme 1α (IRE1α) pathway to initiate the adaptative responses to ER stress, with importance for both proliferation and senescence. Here, we show a role of the UPR sensor proteins IRE1α and (PKR)-like endoplasmic reticulum kinase (PERK) to mediate the tumor-suppressive roles of TGFß1 in mouse keratinocytes expressing mutant forms of HRas. TGFß1 suppressed IRE1α phosphorylation and activation by HRas both in in vitro and in vivo models while simultaneously activating the PERK pathway. However, the increase in ER stress indicated an uncoupling of ER stress and IRE1α activation by TGFß1. Pharmacological and genetic approaches demonstrated that TGFß1-dependent dephosphorylation of IRE1α was mediated by PERK through RNA Polymerase II Associated Protein 2 (RPAP2), a PERK-dependent IRE1α phosphatase. In addition, TGFß1-mediated growth arrest in oncogenic HRas keratinocytes was partially dependent on PERK-induced IRE1α dephosphorylation and inactivation. Together, these results demonstrate a critical cross-talk between UPR proteins that is important for TGFß1-mediated tumor suppressive responses.


Asunto(s)
Endorribonucleasas , ARN Polimerasa II , Animales , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inositol , Queratinocitos/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo
3.
Mol Carcinog ; 58(9): 1623-1630, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31041814

RESUMEN

Cancer is associated with a number of conditions such as hypoxia, nutrient deprivation, cellular redox, and pH changes that result in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) and trigger a stress response known as the unfolded protein response (UPR). The UPR is a conserved cellular survival mechanism mediated by the ER transmembrane proteins activating transcription factor 6, protein kinase-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1α (IRE1α) that act to resolve ER stress and promote cell survival. IRE1α is a kinase/endoribonuclease (RNase) with multiple activities including unconventional splicing of the messenger RNA (mRNA) for the transcription factor X-Box Binding Protein 1 (XBP1), degradation of other mRNAs in a process called regulated IRE1α-dependent decay (RIDD) and activation of a pathway leading to c-Jun N-terminal kinase phosphorylation. Each of these outputs plays a role in the adaptive and cell death responses to ER stress. Many studies indicate an important role for XBP1 and RIDD functions in cancer and new studies suggest that these two functions of the IRE1α RNase can have opposing functions in the early and later stages of cancer pathogenesis. Finally, as more is learned about the context-dependent role of IRE1α in cancer development, specific small molecule inhibitors and activators of IRE1α could play an important role in counteracting the protective shield provided by ER stress signaling in cancer cells.


Asunto(s)
Endorribonucleasas/genética , Regulación de la Expresión Génica/genética , Neoplasias/genética , Respuesta de Proteína Desplegada/genética , Animales , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Humanos , ARN Mensajero/genética , Transducción de Señal/genética
4.
Mediators Inflamm ; 2017: 9067049, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458470

RESUMEN

Obesity is marked by chronic, low-grade inflammation. Here, we examined whether intrinsic differences between white and brown adipocytes influence the inflammatory status of macrophages. White and brown adipocytes were characterized by transcriptional regulation of UCP-1, PGC1α, PGC1ß, and CIDEA and their level of IL-6 secretion. The inflammatory profile of PMA-differentiated U937 and THP-1 macrophages, in resting state and after stimulation with LPS/IFN-gamma and IL-4, was assessed by measuring IL-6 secretion and transcriptional regulation of a panel of inflammatory genes after mono- or indirect coculture with white and brown adipocytes. White adipocyte monocultures show increased IL-6 secretion compared to brown adipocytes. White adipocytes cocultured with U937 and THP-1 macrophages induced a greater increase in IL-6 secretion compared to brown adipocytes cocultured with both macrophages. White adipocytes cocultured with macrophages increased inflammatory gene expression in both types. In contrast, macrophages cocultured with brown adipocytes induced downregulation or no alterations in inflammatory gene expression. The effects of adipocytes on macrophages appear to be independent of stimulation state. Brown adipocytes exhibit an intrinsic ability to dampen inflammatory profile of macrophages, while white adipocytes enhance it. These data suggest that brown adipocytes may be less prone to adipose tissue inflammation that is associated with obesity.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/inmunología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/inmunología , Adulto , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación/inmunología , Interleucina-4/farmacología , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Persona de Mediana Edad
5.
NAR Cancer ; 6(1): zcae003, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288445

RESUMEN

High-grade serous ovarian cancer (HGSC) is a lethal malignancy with elevated replication stress (RS) levels and defective RS and RS-associated DNA damage responses. Here we demonstrate that the bromodomain-containing protein BRD1 is a RS suppressing protein that forms a replication origin regulatory complex with the histone acetyltransferase HBO1, the BRCA1 tumor suppressor, and BARD1, ORigin FIring Under Stress (ORFIUS). BRD1 and HBO1 promote eventual origin firing by supporting localization of the origin licensing protein ORC2 at origins. In the absence of BRD1 and/or HBO1, both origin firing and nuclei with ORC2 foci are reduced. BRCA1 regulates BRD1, HBO1, and ORC2 localization at replication origins. In the absence of BRCA1, both origin firing and nuclei with BRD1, HBO1, and ORC2 foci are increased. In normal and non-HGSC ovarian cancer cells, the ORFIUS complex responds to ATR and CDC7 origin regulatory signaling and disengages from origins during RS. In BRCA1-mutant and sporadic HGSC cells, BRD1, HBO1, and ORC2 remain associated with replication origins, and unresponsive to RS, DNA damage, or origin regulatory kinase inhibition. ORFIUS complex dysregulation may promote HGSC cell survival by allowing for upregulated origin firing and cell cycle progression despite accumulating DNA damage, and may be a RS target.

6.
Life (Basel) ; 12(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35330094

RESUMEN

Human oral cancer is the single largest group of malignancies in the Indian subcontinent and the sixth largest group of malignancies worldwide. Squamous cell carcinomas (SCC) are the most common epithelial malignancy of the oral cavity, constituting over 90% of oral cancers. About 90% of OSCCs arise from pre-existing, potentially malignant lesions. According to WHO, OSCC has a 5-year survival rate of 45-60%. Late diagnosis, recurrence, and regional or lymph nodal metastases could be the main causes of the high mortality rates. Biomarkers may help categorize and predict premalignant lesions as high risk of developing malignancy, local recurrence, and lymph nodal metastasis. However, at present, there is a dearth of such markers, and this is an area of ongoing research. Keratins (K) or cytokeratins are a group of intermediate filament proteins that show paired and differentiation dependent expression. Our laboratory and others have shown consistent alterations in the expression patterns of keratins in both oral precancerous lesions and tumors. The correlation of these changes with clinicopathological parameters has also been demonstrated. Furthermore, the functional significance of aberrant keratins 8/18 expression in the malignant transformation and progression of oral tumors has also been documented. This article reviews the literature that emphasizes the value of keratins as biomarkers for the prognostication of human oral precancers and cancers.

7.
Life (Basel) ; 12(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35207438

RESUMEN

Oral carcinogenesis is a multistep process. As much as 5% to 85% of oral tumors can develop from potentially malignant disorders (PMD). Although the oral cavity is accessible for visual examination, the ability of current clinical or histological methods to predict the lesions that can progress to malignancy is limited. Thus, developing biological markers that will serve as an adjunct to histodiagnosis has become essential. Our previous studies comprehensively demonstrated that aberrant vimentin expression in oral premalignant lesions correlates to the degree of malignancy. Likewise, overwhelming research from various groups show a substantial contribution of vimentin in oral cancer progression. In this review, we have described studies on vimentin in oral cancers, to make a compelling case for vimentin as a prognostic biomarker.

8.
J Invest Dermatol ; 142(6): 1682-1691.e7, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34808241

RESUMEN

The unfolded protein response is activated by UVB irradiation, but the role of a key mediator, IRE1α, is not clear. In this study, we show that mice with an epidermal IRE1α deletion are sensitized to UV with increased apoptosis, rapid loss of UV-induced cyclopyrimidine dimer‒positive keratinocytes, and sloughing of the epidermis. In vitro, Ire1α-deficient keratinocytes have increased UVB sensitivity, reduced cyclopyrimidine dimer repair, and reduced accumulation of γH2AX and phosphorylated ATR, suggesting defective activation of nucleotide excision repair. Knockdown of XBP1 or pharmacologic inhibition of the IRE1α ribonuclease did not phenocopy Ire1α deficiency. The altered UV response was linked to elevated intracellular calcium levels and ROS, and this was due to dysregulation of the endoplasmic reticulum calcium channel InsP3R. Pharmacologic, genetic, and biochemical studies linked the regulation of the Ins3PR, intracellular calcium, and normal UV DNA damage response to CIB1 and the IRE1α‒TRAF2‒ASK1 complex. These results suggest a model where IRE1α activation state drives CIB1 binding either to the InsP3R or ASK1 to regulate endoplasmic reticulum calcium efflux, ROS, and DNA repair responses after UV irradiation.


Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas , Animales , Calcio/metabolismo , Reparación del ADN , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Homeostasis , Ratones , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
9.
Sci Rep ; 11(1): 5749, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707480

RESUMEN

Reactive oxygen species (ROS) are implicated in triggering cell signalling events and pathways to promote and maintain tumorigenicity. Chemotherapy and radiation can induce ROS to elicit cell death allows for targeting ROS pathways for effective anti-cancer therapeutics. Coenzyme Q10 is a critical cofactor in the electron transport chain with complex biological functions that extend beyond mitochondrial respiration. This study demonstrates that delivery of oxidized Coenzyme Q10 (ubidecarenone) to increase mitochondrial Q-pool is associated with an increase in ROS generation, effectuating anti-cancer effects in a pancreatic cancer model. Consequent activation of cell death was observed in vitro in pancreatic cancer cells, and both human patient-derived organoids and tumour xenografts. The study is a first to demonstrate the effectiveness of oxidized ubidecarenone in targeting mitochondrial function resulting in an anti-cancer effect. Furthermore, these findings support the clinical development of proprietary formulation, BPM31510, for treatment of cancers with high ROS burden with potential sensitivity to ubidecarenone.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Neoplasias Pancreáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/análogos & derivados , Animales , Línea Celular Tumoral , Proliferación Celular , Respiración de la Célula , Supervivencia Celular , Complejo II de Transporte de Electrones/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+) , Humanos , Potencial de la Membrana Mitocondrial , Ratones Desnudos , Organoides/patología , Estrés Oxidativo , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Especificidad por Sustrato , Ubiquinona/metabolismo
10.
PLoS One ; 12(2): e0172559, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28225793

RESUMEN

Vimentin is an intermediate filament protein, predominantly expressed in cells of mesenchymal origin, although its aberrant expression is seen in many carcinomas during epithelial mesenchymal transition. In cancer, vimentin expression is associated with the transition from a more differentiated epithelial phenotype to a dedifferentiated state. In view of the perceived role of keratins (Ks) as regulators of differentiation in epithelia, it was important to understand whether vimentin modulates differentiation through the reprogramming of keratins, in transformed cells. To address this, vimentin was stably downregulated in oral cancer derived cells. Further, global keratin profiling was performed after high salt keratin extraction. K5/K14 pair was found to be significantly downregulated, both at protein and mRNA levels upon vimentin downregulation. The previous study from our laboratory has shown a role of the K5/K14 pair in proliferation and differentiation of squamous epithelial cells. Vimentin depleted cells showed an increase in the differentiation state, marked by an increase in the levels of differentiation specific markers K1, involucrin, filaggrin and loricrin while its proliferation status remained unchanged. Rescue experiments with the K5/K14 pair overexpressed in vimentin knockdown background resulted in decreased differentiation state. ΔNp63 emerged as one of the indirect targets of vimentin, through which it modulates the expression levels of K5/K14. Further, immunohistochemistry showed a significant correlation between high vimentin-K14 expression and recurrence/poor survival in oral cancer patients. Thus, in conclusion, vimentin regulates the differentiation switch via modulation of K5/K14 expression. Moreover, vimentin-K14 together may prove to be the novel markers for the prognostication of human oral cancer.


Asunto(s)
Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica , Queratina-14/genética , Neoplasias de la Boca/genética , Recurrencia Local de Neoplasia/genética , Vimentina/genética , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Proteínas Filagrina , Humanos , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Masculino , Ratones , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/mortalidad , Neoplasias de la Boca/patología , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Pronóstico , Receptores Notch/genética , Receptores Notch/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA