Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
ScientificWorldJournal ; 2021: 6641533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054359

RESUMEN

Crude oil spills as a result of natural disasters or extraction and transportation operations are common nowadays. Oil spills have adverse effects on both aquatic and terrestrial ecosystems and pose a threat to human health. This study have been concerned with studying the capability of six fungal species (Curvularia brachyspora, Penicillium chrysogenum, Scopulariopsis brevicaulis, Cladosporium sphaerospermum, Alternaria alternata, and Stemphylium botryosum) and three fungal consortia (FC), FC1 (P. chrysogenum and C. brachyspora), FC2 (S. brevicaulis and S. botryosum), and FC3 (S. brevicaulis, S. botryosum, and C. sphaerospermum), to remediate petroleum hydrocarbons (PHs). Qualitative and quantitative changes in polyaromatic hydrocarbons (PAHs) and saturated hydrocarbons (SH) mixtures and the patterns of PHs degradation have been examined using HPLC and GC. Studying the GC chromatogram of C. sphaerospermum revealed severe degradation of SHs exhibited by this species, and the normal-paraffin and isoparaffin degradation percentage have been valued 97.19% and 98.88%, respectively. A. alternata has shown the highest significant (at P ˂ 0.05) PAH degradation percent reaching 72.07%; followed by P. chrysogenum, 59.51%. HPLC data have revealed that high-molecular-weight PAH percent/total PAHs decreased significantly from 98.94% in control samples to 68.78% in samples treated with A. alternata. FC1 and FC2 consortia have exhibited the highest significant PH deterioration abilities than did the individual isolates, indicating that these fungal consortia exhibited positive synergistic effects. The study supports the critical idea of the potential PAH and SH biodegradation as a more ecologically acceptable alternative to their chemical degradation.


Asunto(s)
Alternaria/metabolismo , Ascomicetos/metabolismo , Biodegradación Ambiental , Cladosporium/metabolismo , Curvularia/metabolismo , Penicillium chrysogenum/metabolismo , Petróleo/metabolismo , Scopulariopsis/metabolismo , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Hidrocarburos/metabolismo , Contaminación por Petróleo , Hidrocarburos Policíclicos Aromáticos/metabolismo
2.
J Genet Eng Biotechnol ; 20(1): 135, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36125630

RESUMEN

BACKGROUND: Phytoremediation is determined as an emerging green technology suitable for the safe remediation and restoration of polluted terrestrial and aquatic environments. In this study, the assessment of an ornamental plant, Vinca rosea L., as a phytoremediator of crude oil in polluted soils was conducted. In an open greenhouse experiment, plants were raised in sandy-clayey soils treated with 1, 3, 5, and 7% oil by weight. The experiment was conducted over 5 months. RESULTS: Total petroleum hydrocarbon (TPH) degradation percentage by V. rosea after a 5-month growth period ranged from 86.83 ± 0.44% to 59.05% ± 0.45% in soil treated with 1 and 7%, respectively. Plants raised in polluted soils demonstrated a dramatic reduction in germination rates, in addition to growth inhibition outcomes shown from decreased plant height. An increase in branching was observed with an increase in oil pollution percentages. Moreover, the phytomass allocated to the leaves was higher, while the phytomass witnessed lower values for fine roots, flowering and fruiting when compared to the controls. Apart from the apparent morphological changes, there was a decrease in chlorophyll a/b ratio, which was inversely proportional to the oil pollution level. The contents of carotenoids, tannins, phenolics, flavonoids, and antioxidant capacity were elevated directly with an increase in oil pollution level. The start codon-targeted (SCoT) polymorphisms and inter-simple sequence repeat (ISSR) primers showed the molecular variations between the control and plants raised in polluted soils. The genetic similarity and genomic DNA stability were negatively affected by increased levels of crude oil pollution. CONCLUSIONS: The ability of V. rosea to degrade TPH and balance the increased or decreased plant functional traits at the macro and micro levels of plant structure in response to crude oil pollution supports the use of the species for phytoremediation of crude oil-polluted sites. The genotoxic effects of crude oil on V. rosea still require further investigation. Further studies are required to demonstrate the mechanism of phenolic, flavonoid, and antioxidant compounds in the protection of plants against crude oil pollution stress. Testing different molecular markers and studying the differentially expressed genes will help understand the behavior of genetic polymorphism and stress-resistant genes in response to crude oil pollution.

3.
Nanomaterials (Basel) ; 10(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033111

RESUMEN

Crude oil pollution of water bodies is a worldwide problem that affects water ecosystems and is detrimental to human health and the diversity of living organisms. The objective of this study was to assess the ability of water hyacinth (Eichhornia crassipes (Mart.) Solms) combined with the presence of magnetic nanoparticles capped with natural products based on Myrrh to treat fresh water contaminated by crude petroleum oil. Magnetic nanoparticles based on magnetite capped with Myrrh extracts were prepared, characterized, and used to adsorb heavy components of the crude oil. The hydrophobic hexane and ether Myrrh extracts were isolated and used as capping for magnetite nanoparticles. The chemical structures, morphologies, particle sizes, and magnetic characteristics of the magnetic nanoparticles were investigated. The adsorption efficiencies of the magnetic nanoparticles show a greater efficiency to adsorb more than 95% of the heavy crude oil components. Offsets of Water hyacinth were raised in bowls containing Nile River fresh water under open greenhouse conditions, and subjected to varying crude oil contamination treatments of 0.5, 1, 2, 3, and 5 mL/L for one month. Plants were harvested and separated into shoots and roots, oven dried at 65 °C, and grounded into powder for further analysis of sulphur and total aromatic and saturated hydrocarbons, as well as individual aromatic constituents. The pigments of chlorophylls and carotenoids were measured spectrophotometrically in fresh plant leaves. The results indicated that the bioaccumulation of sulphur in plant tissues increased with the increased level of oil contamination. Water analysis showed significant reduction in polyaromatic hydrocarbons. The increase of crude oil contamination resulted in a decrease of chlorophylls and carotenoid content of the plant tissues. The results indicate that the water hyacinth can be used for remediation of water slightly polluted by crude petroleum oil. The presence of magnetite nanoparticles capped with Myrrh resources improved the remediation of water highly polluted by petroleum crude oil.

4.
Nanomaterials (Basel) ; 9(2)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717327

RESUMEN

Superhydrophobic nanomaterials are promising in the important pursuit to alleviate the environmental pollution caused by the petroleum crude oil industry, especially to clean-up oil spills. In this work, asphaltenes isolated from crude oil were modified to act as capping agents during the synthesis of hydrophobic silica nanoparticles (HSNPs). The chemical structure, surface morphology, particle size, and surfaces charge of HSNPs were investigated. The contact angles of water droplets on HSNP film surfaces were measured to investigate their wetting properties. Finally, superhydrophobic sand and polyurethane sponge were prepared by coating them with HSNPs and applied in the cleanup of oil spills of viscous heavy Arabian crude oil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA