Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Analyst ; 141(17): 5127-36, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27414261

RESUMEN

Despite the fact that various microorganisms (e.g., bacteria, fungi, viruses, etc.) have been linked with infectious diseases, their crucial role towards sustaining life on Earth is undeniable. The huge biodiversity, combined with the wide range of biochemical capabilities of these organisms, have always been the driving force behind their large number of current, and, as of yet, undiscovered future applications. The presence of such diversity could be said to expedite the need for the development of rapid, accurate and sensitive techniques which allow for the detection, differentiation, identification and classification of such organisms. In this study, we employed Fourier transform infrared (FT-IR), Raman, and surface enhanced Raman scattering (SERS) spectroscopies, as molecular whole-organism fingerprinting techniques, combined with multivariate statistical analysis approaches for the classification of a range of industrial, environmental or clinically relevant bacteria (P. aeruginosa, P. putida, E. coli, E. faecium, S. lividans, B. subtilis, B. cereus) and yeast (S. cerevisiae). Principal components-discriminant function analysis (PC-DFA) scores plots of the spectral data collected from all three techniques allowed for the clear differentiation of all the samples down to sub-species level. The partial least squares-discriminant analysis (PLS-DA) models generated using the SERS spectral data displayed lower accuracy (74.9%) when compared to those obtained from conventional Raman (97.8%) and FT-IR (96.2%) analyses. In addition, whilst background fluorescence was detected in Raman spectra for S. cerevisiae, this fluorescence was quenched when applying SERS to the same species, and conversely SERS appeared to introduce strong fluorescence when analysing P. putida. It is also worth noting that FT-IR analysis provided spectral data of high quality and reproducibility for the whole sample set, suggesting its applicability to a wider range of samples, and perhaps the most suitable for the analysis of mixed cultures in future studies. Furthermore, our results suggest that while each of these spectroscopic approaches may favour different organisms (sample types), when combined, they would provide complementary and more in-depth knowledge (structural and/or metabolic state) of biological systems. To the best of our knowledge, this is the first time that such a comparative and combined spectroscopic study (using FT-IR, Raman and SERS) has been carried out on microbial samples.


Asunto(s)
Bacterias/aislamiento & purificación , Saccharomyces cerevisiae/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Bacterias/clasificación , Reproducibilidad de los Resultados
2.
Langmuir ; 31(4): 1581-7, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24992704

RESUMEN

A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.


Asunto(s)
Álcalis/química , Frío , Fibra de Algodón , Metales/química , Compuestos Orgánicos/química , Textiles , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
3.
Biomater Sci ; 6(4): 803-812, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29383335

RESUMEN

The delivery of poorly water-soluble antimicrobial peptides (AMPs) that are sensitive to degradation is a major challenge in the pharmaceutical field. In this study, we design and characterize a pH-sensitive nanocarrier with the potential for delivery of AMPs and their protection from degradation. These nanobiointerfaces are prepared through the self-assembly of oleic acid (OA) with the human cathelicidin LL-37 in excess water. Advanced experimental methods including synchrotron small angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering were used to characterize the OA/LL-37 self-assemblies and their structural alterations in response to changes in pH and composition. Experimental findings reveal colloidal transformations from normal emulsions via micellar cubosomes and hexosomes to vesicles upon increasing the pH from 6.0 to 8.0 at a LL-37 content around 10 wt% relative to OA. Increasing the LL-37 content to 30 wt% in OA led to diminishing of micellar cubosomes and hexosomes in this narrow pH range, favoring the formation of micelles and vesicles of various shapes and sizes. Upon increasing the pH, with the strongest effect around pH 7.5, charge repulsions among the gradually deprotonating carboxylic groups of OA modified the geometric packing of the molecules, significantly affecting the nanostructure. These detailed insights into the formation of this unique family of nanobiointerfaces and their tunable structural features may contribute to the rational design of pH-responsive antimicrobial systems for the delivery of peptides, particularly poorly water-soluble AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Micelas , Nanoestructuras/química , Ácido Oléico/química , Emulsiones/química , Concentración de Iones de Hidrógeno , Polimerizacion , Catelicidinas
4.
Chem Commun (Camb) ; 50(100): 15856-9, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25331713

RESUMEN

A new ultrafast and highly sensitive 'turn-off/turn-on' biosensing approach that combines the intrinsic peroxidase-like activity of gold nanoparticles (GNPs) with the high affinity and specificity of a ssDNA aptamer is presented for the efficient detection of a model small molecule kanamycin.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Oro/química , Kanamicina/análisis , Nanopartículas del Metal/química , ADN de Cadena Simple/química , Peroxidasa/química , Peroxidasa/metabolismo
5.
J Colloid Interface Sci ; 436: 251-7, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25278363

RESUMEN

HYPOTHESIS: The reproducible surface enhanced Raman scattering (SERS)-based sensing of an analyte relies on high quality SERS substrates that offer uniformity over large areas. Uniform ZnO nanoarrays are expected to offer an appropriate platform for SERS sensing. Moreover, since ZnO has good photocatalytic properties, controllable decoration of silver nanoparticles on ZnO nanoarrays may offer an additional opportunity to clean up SERS substrates after each sensing event. EXPERIMENTS: This study employs a facile soft chemical synthesis strategy to fabricate Raman-active and recyclable ZnO/Ag nanorod arrays as reproducible SERS substrates. Arrays of ZnO nanorods were synthesized using hydrothermal method, which was followed by controllable decoration of ZnO with silver nanoparticles (AgNPs) using an electroless plating technique. FINDINGS: The uniform density of SERS-active 'hot-spots' on ZnO nanoarrays could be controlled on a large 1×1 cm(2) substrate. These ZnO/Ag nanoarrays showed high reproducibility (0.132 RSD) towards acquiring SERS spectra of rhodamine B (RB) at 30 random locations on a single substrate. The photocatalytic nature of ZnO/Ag semiconductor/metal hybrid endowed these substrates with reusability characteristics. By controlling metal loading on a semiconductor surface, photocatalytic activity and high SERS performance can be integrated within a single package to obtain high quality, reproducible, stable and recyclable SERS substrates.


Asunto(s)
Nanoestructuras/química , Plata/química , Óxido de Zinc/química , Microscopía Electrónica de Rastreo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA