Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Plant ; 176(3): e14379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38853306

RESUMEN

Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.


Asunto(s)
Ácido Abscísico , Capsicum , Sequías , Fotosíntesis , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Capsicum/fisiología , Capsicum/genética , Capsicum/metabolismo , Fotosíntesis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arachis/genética , Arachis/fisiología , Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Antioxidantes/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Resistencia a la Sequía
2.
Mol Biol Rep ; 51(1): 527, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637351

RESUMEN

BACKGROUND: SnRK2 plays vital role in responding to adverse abiotic stimuli. The applicability of TaSnRK2.4 and TaSnRK2.9 was investigated to leverage the potential of these genes in indigenous wheat breeding programs. METHODS: Genetic diversity was assessed using pre-existing markers for TaSnRK2.4 and TaSnRK2.9. Furthermore, new markers were also developed to enhance their broader applicability. KASP markers were designed for TaSnRK2.4, while CAPS-based markers were tailored for TaSnRK2.9. RESULTS: Analysis revealed lack of polymorphism in TaSnRK2.4 among Pakistani wheat germplasm under study. To validate this finding, available gel-based markers for TaSnRK2.4 were employed, producing consistent results and offering limited potential for application in marker-assisted wheat breeding with Pakistani wheat material. For TaSnRK2.9-5A, CAPS2.9-5A-1 and CAPS2.9-5A-2 markers were designed to target SNP positions at 308 nt and 1700 nt revealing four distinct haplotypes. Association analysis highlighted the significance of Hap-5A-1 of TaSnRK2.9-5A, which exhibited association with an increased number of productive tillers (NPT), grains per spike (GPS), and reduced plant height (PH) under well-watered (WW) conditions. Moreover, it showed positive influence on NPT under WW conditions, GPS under water-limited (WL) conditions, and PH under both WW and WL conditions. High selection intensity observed for Hap-5A-1 underscores the valuable role it has played in Pakistani wheat breeding programs. Gene expression studies of TaSnRK2.9-5A revealed the involvement of this gene in response to PEG, NaCl, low temperature and ABA treatments. CONCLUSION: These findings propose that TaSnRK2.9 can be effectively employed for improving wheat through marker-assisted selection in wheat breeding efforts.


Asunto(s)
Resistencia a la Sequía , Triticum , Triticum/metabolismo , Genotipo , Fitomejoramiento , Pan , Proteínas de Plantas/genética
3.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792069

RESUMEN

A highly efficient low-cost adsorbent was prepared using raw and chemically modified cellulose isolated from sugarcane bagasse for decontamination of Cr(VI) from wastewater. First, cellulose pulp was isolated from sugarcane bagasse by subjecting it to acid hydrolysis, alkaline hydrolysis and bleaching with sodium chlorate (NaClO3). Then, the bleached cellulose pulp was chemically modified with acrylonitrile monomer in the presence Fenton's reagent (Fe+2/H2O2) to carry out grafting of acrylonitrile onto cellulose by atom transfer radical polymerization. The developed adsorbent (acrylonitrile grafted cellulose) was analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Both raw cellulose and acrylonitrile grafted cellulose were used for chromium removal from wastewater. The effects of metal ion concentration, pH, adsorbent dose and time were studied, and their values were optimized. The optimum conditions for the adsorption of Cr(VI) onto raw and chemically modified cellulose were: metal ion concentration: 50 ppm, adsorbent dose: 1 g, pH: 6, and time: 60 min. The maximum efficiencies of 73% and 94% and adsorption capacities of 125.95 mg/g and 267.93 mg/g were achieved for raw and acrylonitrile grafted cellulose, respectively. High removal efficiency was achieved, owing to high surface area of 79.92 m2/g and functional active binding cites on grafted cellulose. Isotherm and kinetics studies show that the experimental data were fully fitted by the Freundlich isotherm model and pseudo first-order model. The adsorbent (acrylonitrile grafted cellulose) was regenerated using three different types of regenerating reagents and reused thirty times, and there was negligible decrease (19%) in removal efficiency after using it for 30 times. Hence, it is anticipated that acrylonitrile could be utilized as potential candidate material for commercial scale Cr(VI) removal from wastewater.


Asunto(s)
Acrilonitrilo , Celulosa , Cromo , Saccharum , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Celulosa/química , Cromo/aislamiento & purificación , Cromo/química , Acrilonitrilo/química , Saccharum/química , Aguas Residuales/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
Development ; 145(7)2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29540501

RESUMEN

The Drosophila Ash1 protein is a trithorax-group (trxG) regulator that antagonizes Polycomb repression at HOX genes. Ash1 di-methylates lysine 36 in histone H3 (H3K36me2) but how this activity is controlled and at which genes it functions is not well understood. We show that Ash1 protein purified from Drosophila exists in a complex with MRG15 and Caf1 that we named AMC. In Drosophila and human AMC, MRG15 binds a conserved FxLP motif near the Ash1 SET domain and stimulates H3K36 di-methylation on nucleosomes. Drosophila MRG15-null and ash1 catalytic mutants show remarkably specific trxG phenotypes: stochastic loss of HOX gene expression and homeotic transformations in adults. In mutants lacking AMC, H3K36me2 bulk levels appear undiminished but H3K36me2 is reduced in the chromatin of HOX and other AMC-regulated genes. AMC therefore appears to act on top of the H3K36me2/me3 landscape generated by the major H3K36 methyltransferases NSD and Set2. Our analyses suggest that H3K36 di-methylation at HOX genes is the crucial physiological function of AMC and the mechanism by which the complex antagonizes Polycomb repression at these genes.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Proteínas de Unión al ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica , Genes Homeobox/genética , Humanos , Lisina/metabolismo , Espectrometría de Masas , Proteína 4 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/genética
5.
BMC Med Genet ; 20(1): 193, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822280

RESUMEN

BACKGROUND: The deficiency of vitamin D receptor (VDR) or its ligand, vitamin D3, is linked to the development of renal diseases. The TaqI (rs731236) and ApaI (rs7975232) polymorphisms of VDR gene are widely studied for their association with renal disease risk. However, studies have largely been ambiguous. METHODS: Meta-analysis was carried out to clarify the association of TaqI (2777 cases and 3522 controls) and ApaI (2440 cases and 3279 controls) polymorphisms with nephrolithiasis (NL), diabetic nephropathy (DN) and end stage renal disease (ESRD). RESULTS: The VDR TaqI C-allele under allele contrast was significantly associated with ESRD in both fixed effect and random effect models, and ApaI C-allele with ESRD only under fixed effect model. Cochrane Q-test showed no evidence of heterogeneity for TaqI polymorphism and a significant heterogeneity for Apa I polymorphism. No publication bias was observed for both the polymorphisms. CONCLUSIONS: The present meta-analysis identifies TaqI and ApaI polymorphisms of VDR gene as risk factors for renal diseases.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Nefropatías Diabéticas/genética , Fallo Renal Crónico/genética , Nefrolitiasis/genética , Polimorfismo de Nucleótido Simple , Receptores de Calcitriol/genética , Estudios de Casos y Controles , Humanos , Receptores de Calcitriol/metabolismo
6.
Phys Chem Chem Phys ; 21(17): 8709-8720, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30888349

RESUMEN

Multiferroics that permit manipulation of the magnetization vector exclusively by electric fields have spawned extensive interest for memory and logic device applications. In line with this understanding, we herein report the encapsulation of non-ferroelectric magnesium ferrite (MgFe2O4) nanoparticles in a ferroelectric shell of BaTiO3 to produce a system with engineered dielectric, magnetic, magneto-electric and ferroelectric properties. The interface effect on the strain transfer was observed to strongly influence the magneto-electric coupling and the electric and magnetic properties of the system. The model polyhedral image of MgFe2O4@BaTiO3 has helped to get an insight into the core-shell structure. The multiferroicity induced by the excellent coupling between the ferroelectric and magnetostrictive phases at the core-shell interface unlocks wide prospects for device downscaling and information storage applications. The influence of magnetostrictive stress on the magneto-electric coupling effects and domain dynamics was further studied using transmission electron microscopy (TEM) and atomic force microscopy images. Interestingly, the realization of a superparamagnetic multiferroic system has been a breakthrough and facilitates ultra high density magnetic data storage technologies. Evidence for spontaneous polarization and the ferroelectric trait exhibited by the multiferroic samples was revealed from the P-E hysteresis loop. The investigation of defect evolution in the system was carried out using positron annihilation lifetime spectroscopy (PALS) and coincidence Doppler broadening spectroscopy (CDBS) of annihilation radiation and the studies revealed thermal diffusion of positrons into the interfacial regions within the core-shell structure and the "formation and pick-off annihilation of orthopositronium atoms". It is concluded that interface engineering is a strong means for manipulation of the magnetic, dielectric and magneto-electric properties in multiferroic heterostructures for high density electrical energy and magnetic data storage.

7.
Toxicol Mech Methods ; 29(3): 211-218, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30480468

RESUMEN

Incense smoke is reported to increase cardiovascular disease (CVD) risk in exposed individuals. However, the mechanism underlying the toxic effect of incense smoke on cardiovascular system is unclear. To test this, we chronically exposed male albino rats to two different types of Arabian incense smoke and studied their effects on oxidative stress, inflammation, and endothelial function. Rats exposed to either of incense smoke showed a significant increase in malondialdehyde (MDA) and a significant decline in superoxide dismutase (SOD) and reduced glutathione (GSH). Endothelial functional marker, nitric oxide (NO) was significantly decreased while endothelin-1 was significantly increased in rats exposed to both the incense types. Incense smoke exposure also led to a significant increase in chemokines and inflammatory mediators including monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage-colony stimulating factor (GM-CSF), regulated on activation normal T cell expressed and secreted (RANTES), interleukin-4 (IL-4), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). Besides, incense smoke-exposed rats demonstrated a significant increase in the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecules-1 (VCAM-1), and E-selectin. Importantly, cessation of incense smoke exposure for 30 days led to a significant reversal in the levels of all the studied markers. Collectively, this study describes oxidative stress, endothelial dysfunction, and inflammation as possible underlying mechanisms in the toxic effects of incense smoke on increased CVD risk in exposed individuals. Findings also underscore that avoiding incense smoke exposure may have beneficial health effects.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Citocinas/sangre , Endotelio Vascular/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Humo/efectos adversos , Animales , Aorta Abdominal/inmunología , Aorta Abdominal/metabolismo , Biomarcadores/sangre , Moléculas de Adhesión Celular/genética , Endotelina-1/metabolismo , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Masculino , Óxido Nítrico/metabolismo , Estrés Oxidativo/inmunología , Ratas Wistar
8.
Physiol Mol Biol Plants ; 25(3): 611-624, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31168227

RESUMEN

Being more sensitive to salt stress among the cereals, growth of rice (Oryza sativa L.) has been habitually affected by salinity. Although, several practices have evolved to sustain the growth of rice under salinity, the enormous role of calcium (Ca2+) as a signalling molecule in salt stress mitigation is still arcane. Considering this fact, an experiment was performed aiming to explicate the mechanism of salt-induced growth inhibition in rice and its alleviation by exogenous Ca2+. At germination stage, 10 mM and 15 mM CaCl2 primed rice (cv. Binadhan-10 & Binadhan-7) seeds were grown in petri dishes for 9 days under 100 mM NaCl stress. At seedling stage, 9-day-old rice seedlings grown on sand were exposed to 100 mM NaCl alone and combined with 10 mM and 15 mM CaCl2 for 15 days. This research revealed that salinity radically slowed down growth of rice seedlings and Ca2+ treatment noticeably improved growth performances. At germination stage, 10 mM CaCl2 treatment significantly increased the final germination percentage, germination rate index (in Binadhan-7), shoot, root length (89.20, 67.58% in Bindhan-10 & 84.72, 31.15% in Bindhan-7) and biomass production under salinity. Similarly, at seedling stage, 10 mM CaCl2 supplementation in salt-stressed plants enhanced shoot length (42.17, 28.76%) and shoot dry weight (339.52, 396.20%) significantly in Binadhan-10 & Binadhan-7, respectively, but enhanced root dry weight (36.76%) only in Binadhan-10. In addition, 10 mM CaCl2 supplementation on salt-stressed seedlings increased the chlorophyll and proline content, and oppressed the accretion of reactive oxygen species thus protecting from oxidative damage more pronouncedly in Binadhan-10 than Binadhan-7 as reflected by the elevated levels of catalase and ascorbate peroxidase activity. The 15 mM CaCl2 somehow also enhanced some growth parameters but overall was less effective than 10 mM CaCl2 to alleviate salt stress, and sometimes showed negative effect. Therefore, supplementary application of calcium-rich fertilizers in saline prone soils can be an effective approach to acclimatize salt stress and cultivate rice successfully.

9.
J Oral Pathol Med ; 45(9): 687-690, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27132033

RESUMEN

BACKGROUND: Oral cancer is the commonest cause of death in the Indian population, with a mortality rate of 0.3 million deaths per year. Oral submucous fibrosis (OSMF) is a potentially malignant disorder that has a high prevalence rate in India. It has been found that serum lactate dehydrogenase levels are increased in potentially malignant and malignant disorders. There are very few data on the application of salivary LDH in the detection of such disorders. AIMS AND OBJECTIVES: The estimation of LDH levels in saliva as diagnostic markers, using a noninvasive method in patients with OSMF, oral cancer, and in the controls. METHODS: A total of 60 subjects with the age range of 20-70 years were selected from the Department of Oral Medicine & Radiology and were grouped into three groups. Twenty-five subjects with clinically diagnosed OSMF (Group I), 25 subjects with histopathologically diagnosed oral cancer (Group II), and 10 subjects as control (Group III). Five milliliters of unstimulated whole saliva was aseptically collected. Following which, the collected saliva was centrifuged and then analyzed by ERBA-CHEM 5 semi auto-analyzer. The values obtained were statistically analyzed using descriptive statistics and paired t-test using the SPSS software version 22. P-value < 0.05- was taken as significant. RESULTS: The mean LDH levels were Group I 608.28 ± 30.22, Group II 630.96 ± 39.80, and Group III 182.21 ± 34.85. The P-value obtained was 0.0009 for both Group I and Group II which was highly significant. CONCLUSION: Salivary LDH levels were consistently higher in OSMF and oral cancer; hence, it could be a future biomarker.


Asunto(s)
Biomarcadores de Tumor/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Neoplasias de la Boca/diagnóstico , Fibrosis de la Submucosa Bucal/diagnóstico , Saliva/metabolismo , Adulto , Anciano , Humanos , India , Persona de Mediana Edad , Neoplasias de la Boca/metabolismo , Fibrosis de la Submucosa Bucal/metabolismo , Adulto Joven
10.
Inhal Toxicol ; 28(8): 364-73, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27180632

RESUMEN

CONTEXT: Previous studies, including ours, have shown adverse effects of incense smoke on human health. However, the effect of incense smoke on kidney function and structure remains unknown. OBJECTIVE: To evaluate possible adverse effects of incense smoke on kidney function and architecture in albino rats after chronic exposure to Arabian incense. MATERIALS AND METHODS: Emission characteristics including particle size distribution, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) were determined by gravimetric and GCMS analyses. Kidney functional markers, oxidative stress and inflammatory markers were measured by standard or ELISA based procedures. Ultrastructural changes in kidney were examined by transmission electron microscope (TEM) and the gene expression of xenobiotic metabolizing enzymes including cytochrome P-450-1A1 (CYP1A1) and CYP1A2 were studied by real time PCR. RESULTS: Rats exposed to incense smoke demonstrated a significant increase in serum creatinine, uric acid, blood urea nitrogen (BUN), tissue malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and interleukin-4 (IL-4) levels and a significant decline in tissue reduced glutathione (GSH) and catalase activity. Incense smoke exposed rats also displayed marked ultrastructural changes in kidney tissue. Further, a significant increase in tissue gene expression of both CYP1A1 and CYP1A2 was noted in exposed rats. DISCUSSION: Changes to kidney functional markers and architecture appear to be mediated through augmented oxidative stress and inflammation. CONCLUSION: Long-term exposure to incense smoke may have deleterious effects on kidney function and architecture. Though, inhalation is the rout of exposure, findings of this study underscore that incense smoke may also have an effect on non-pulmonary tissues.


Asunto(s)
Riñón/efectos de los fármacos , Humo/efectos adversos , Animales , Nitrógeno de la Urea Sanguínea , Catalasa/metabolismo , Creatinina/sangre , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Interleucina-4/metabolismo , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Masculino , Malondialdehído/metabolismo , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo , Ácido Úrico/sangre
11.
Mol Cell Biochem ; 391(1-2): 127-36, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24557852

RESUMEN

Incense smoke is increasingly being recognized as a potential environmental contaminant and is linked to malignant and non-malignant respiratory diseases. The detoxification of environmental contaminants including polycyclic aromatic hydrocarbons (PAHs) involves the induction of cytochrome P-450 family enzymes (CYPs) by PAHs. However, the detoxification of PAHs also results in the generation of reactive and unstable intermediary metabolites which are implicated in the oxidative stress, DNA damage, and inflammation. It is unclear whether CYPs are similarly induced by incense smoke, which incidentally contains substantial amounts of PAHs. Here, we examined the impact of long-term incense smoke exposure on the induction of CYPs in male Wister Albino rats. Incense smoke exposure significantly induced the expression of CYP1A1, CYP1A2, and CYP1B1 mRNAs in both lung and liver tissues. The extent of CYP1A1 and CYP1B1 induction was significantly higher in the liver compared to that in the lung, while that of CYP1A2 was greater in the lung than in liver. Incense smoke exposure also increased malondialdehyde and reduced glutathione levels in lung and liver tissues, and the catalase activity in the liver tissues to significant levels. Furthermore incense smoke exposure led to a marked increase in TNF-α and IL-4 levels. The data demonstrate for the first time the capacity of incense smoke to induce CYP1 family enzymes in the target and non-target tissues. Induction of CYPs increased oxidative stress and inflammation appear to be intimately linked to promote the carcinogenesis and health complications in people chronically exposed to incense smoke.


Asunto(s)
Citocromo P-450 CYP1A1/biosíntesis , Citocromo P-450 CYP1A2/biosíntesis , Citocromo P-450 CYP1B1/biosíntesis , Inflamación/enzimología , Hígado/enzimología , Pulmón/enzimología , Estrés Oxidativo , Humo/efectos adversos , Animales , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Inducción Enzimática , Inflamación/patología , Interleucina-4/metabolismo , Hígado/patología , Pulmón/patología , Masculino , Especificidad de Órganos/genética , Estrés Oxidativo/genética , Perfumes/efectos adversos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
12.
Nanotechnology ; 25(47): 475102, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25379988

RESUMEN

This paper presents a simple approach to create a two-tiered surface for superior cancer cell isolation. The idea is inspired by the interactions of cells with a nanotextured basement membrane. The texture mimicked the extracellular matrix and basement membrane for superior target cell adhesion. Prepared micro+nanotextured surfaces showed enhanced cell capture. Preparation of the two-tiered surface was done using micro- and nanotexturing and was easily reproducible. It has been shown before that the larger surface area of a nanotextured surface assists the cell's attachment through surface-anchored ligands. Taking it a step further, ligand functionalized two-level micro+nanotextured surfaces improved the sensitivity of the cancer cell isolation over simple flat nanotexturing. The isolation efficiency increased by 208% compared to the surface with a single-level nanotexture. The two-tiered surface was compatible with previously reported nanotextured devices used for cancer cell isolation. Micro-texture on the glass surface was created using simple sand gritting, followed by reactive ion etching (RIE) of the entire surface. The approach could create large surface areas within a short time while maintaining superior cell isolation efficiency.


Asunto(s)
Separación Celular , Glioblastoma/diagnóstico , Nanoestructuras/química , Membrana Basal , Adhesión Celular , Matriz Extracelular , Humanos , Ligandos
13.
Open Vet J ; 14(7): 1585-1595, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39175971

RESUMEN

Background: Thioacetamide (TAA) is known to cause damage to various organs, including the testes, posing a significant health threat. On the other hand, Curcuma longa (Cl) has been recognized for its antioxidant properties, suggesting a potential protective role against TAA-induced toxicity in the testes. Aim: This study aims to investigate the effect of TAA on testicular function and structure while exploring the therapeutic and protective potential of C. longa versus TAA toxicity. Methods: Thirty-two male albino rats, with an age range of 11-12 weeks and a weight range of 180-200 g, were randomly allocated into four distinct groups. The control group received normal saline, while the Cl group ingested Cl orally at a dose of 500 mg/kg daily. The TAA group, received TAA through intraperitoneal injections at a dose of 200 mg/kg body weight three times per week. Lastly, the Cl with TAA group received Cl orally 2 hours before the TAA injections. After 8 weeks of treatment, we anesthetized the rats and saved blood samples for biochemical analysis. Results: The study revealed significant alterations in various biochemical parameters in the TAA-treated group, as compared with the control. Specifically, there was a significant increase in bilirubin, albumin, cholesterol, triglyceride, very low-density lipoprotein, white blood cells, low-density lipoprotein cholesterol, and platelets levels. Conversely, the Cl-treated group exhibited significant reductions in these parameters, along with notable increases in red blood cells, high-density lipoprotein cholesterol, and hemoglobin. Conclusion: C. longa demonstrates a protective effect on the testes against TAA-induced toxicity, potentially attributed to its antioxidant properties. This suggests a promising avenue for the use of Cl in mitigating the harmful effects of TAA on testicular function and structure.


Asunto(s)
Curcuma , Infertilidad Masculina , Extractos Vegetales , Testículo , Tioacetamida , Masculino , Animales , Curcuma/química , Ratas , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Infertilidad Masculina/inducido químicamente , Infertilidad Masculina/prevención & control , Infertilidad Masculina/veterinaria , Testículo/efectos de los fármacos , Antioxidantes/administración & dosificación
14.
GM Crops Food ; 15(1): 130-149, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38551174

RESUMEN

Global crop yield has been affected by a number of abiotic stresses. Heat, salinity, and drought stress are at the top of the list as serious environmental growth-limiting factors. To enhance crop productivity, molecular approaches have been used to determine the key regulators affecting stress-related phenomena. MYB transcription factors (TF) have been reported as one of the promising defensive proteins against the unfavorable conditions that plants must face. Different roles of MYB TFs have been suggested such as regulation of cellular growth and differentiation, hormonal signaling, mediating abiotic stress responses, etc. To gain significant insights, a comprehensive in-silico analysis of OsMYB TF was carried out in comparison with 21 dicot MYB TFs and 10 monocot MYB TFs. Their chromosomal location, gene structure, protein domain, and motifs were analyzed. The phylogenetic relationship was also studied, which resulted in the classification of proteins into four basic groups: groups A, B, C, and D. The protein motif analysis identified several conserved sequences responsible for cellular activities. The gene structure analysis suggested that proteins that were present in the same class, showed similar intron-exon structures. Promoter analysis revealed major cis-acting elements that were found to be responsible for hormonal signaling and initiating a response to abiotic stress and light-induced mechanisms. The transformation of OsMYB TF into tobacco was carried out using the Agrobacterium-mediated transformation method, to further analyze the expression level of a gene in different plant parts, under stress conditions. To summarize, the current studies shed light on the evolution and role of OsMYB TF in plants. Future investigations should focus on elucidating the functional roles of MYB transcription factors in abiotic stress tolerance through targeted genetic modification and CRISPR/Cas9-mediated genome editing. The application of omics approaches and systems biology will be indispensable in delineating the regulatory networks orchestrated by MYB TFs, facilitating the development of crop genotypes with enhanced resilience to environmental stressors. Rigorous field validation of these genetically engineered or edited crops is imperative to ascertain their utility in promoting sustainable agricultural practices.


Asunto(s)
Nicotiana , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Productos Agrícolas/genética , Estrés Fisiológico/genética
15.
Sci Rep ; 14(1): 3736, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355953

RESUMEN

Bioactive compounds are secondary metabolites of plants. They offer diverse pharmacological properties. Peganum harmala is reported to have pharmaceutical effects like insecticidal, antitumor, curing malaria, anti-spasmodic, vasorelaxant, antihistaminic effect. Rosa brunonii has medicinal importance in its flower and fruits effective against different diseases and juice of leaf is reported to be applied externally to cure wounds and cuts. Dryopteris ramosa aqueous leaf extract is used to treat stomach ulcers and stomachaches. Each of these three medicinal plants have been indicated to have anticancer, antiviral, antioxidant, cytotoxic and antifungal effects but efficacy of their bioactive compounds remained unexplored. Study was aimed to explore In-vitro and In-silico anticancer, antiviral, antioxidant, cytotoxic and antifungal effects of bioactive compounds of above three medicinal plants. DPPH and ABTS assay were applied for assessment of antioxidant properties of compounds. Antibacterial properties of compounds were checked by agar well diffusion method. Brine shrimp lethality assay was performed to check cytotoxic effect of compounds. Molecular docking was conducted to investigate the binding efficacy between isolated compounds and targeted proteins. The compound isomangiferrin and tiliroside presented strong antioxidant potential 78.32% (± 0.213) and 77.77% (± 0.211) respectively in DPPH assay while harmaline showed 80.71% (± 0.072) at 200 µg/mL in ABTS assay. The compound harmine, harmaline and PH-HM 17 exhibited highest zone of inhibition 22 mm, 23 mm, 22 mm respectively against Xanthomonas while Irriflophenone-3-C-ß- D-glucopyranoside showed maximum zone of inhibition 34 mm against E. coli. The compound isomangiferrin and vasicine contained strong antibacterial activity 32 mm and 22 mm respectively against S. aureus. The compound mangiferrin, astragalin, tiliroside, quercitin-3-O-rhamnoside showed maximum inhibitory zone 32 mm, 26 mm, 24 mm and 22 mm respectively against Klebsiella pneumoniae. Highest cytotoxic effect was observed by compound tiliroside i.e. 95% with LD50 value 73.59 µg/mL. The compound tiliroside showed the best binding mode of interaction to all targeted proteins presenting maximum hydrophobic interactions and hydrogen bonds. The binding affinity of tiliroside was - 17.9, - 14.9, - 14.6, - 13.8, - 12.8 against different proteins 6VAR, 5C5S, IEA3, 2XV7 and 6LUS respectively. Bioactive compounds are significant natural antioxidants, which could help to prevent the progression of various diseases caused by free radicals. Based on molecular docking we have concluded that phytochemicals can have better anticancer and antiviral potential.


Asunto(s)
Benzotiazoles , COVID-19 , Plantas Medicinales , Ácidos Sulfónicos , Plantas Medicinales/química , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , Antifúngicos , Antioxidantes/química , Harmalina , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antivirales/farmacología
16.
Funct Plant Biol ; 512024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38493797

RESUMEN

Wheat (Triticum aestivum L.) is the most extensively cultivated cereal crop in the world; however, its growth and development are affected by different types of biotic and abiotic stress conditions. The aim of this study was to assess the physico-chemical diversity in different wheat genotypes under rain-fed conditions. Principle component analysis (PCA) showed that significant variation for different components contributed 77.87% of total variability among all genotypes. In the scree plot, the first two PCs (PC1=44.75%, PC2=14.28%) had significant differences for numerous agronomic traits. The scatter biplot depicted eight genotypes (Zardana, NR-462, D-97, BARS-2009 (a check), NR-481, Tarnab-73, NR-489 and Pirsabak-91) with high diversity (variation ~90%) for different morphological traits, identifiable as they were located further away from the origin than other genotypes. Factor analysis of loading factors among wheat genotypes across different morpho-physiological traits also showed significant diversity for positive and negative loads. In cluster analysis, genotypes such as BWP-97, BARS-2009, NR-489, NR-448 and Pak. 13 were outliers, indicating significant diversity among all genotypes for different agronomic traits. Biochemical analysis showed maximum values for antioxidant activity, total phenolic content, and total flavonoid content in lines NR-485 (93.76%), NR-489 (3.55mg gallic acid equivalent (GAE)/g), and the variety Suleman-96 (3.45mg quercetin equivalent (QE)/g), respectively. This study provides new insights for understanding the diversity of different wheat genotypes under rain-fed conditions, and the selected genotypes can be evaluated for further breeding programs.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Genotipo , Fenotipo , Lluvia
17.
Bot Stud ; 65(1): 20, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995467

RESUMEN

Heavy metals stress particularly cadmium contamination is hotspot among researchers and considered highly destructive for both plants and human health. Iron is examined as most crucial element for plant development, but it is available in inadequate amount because they are present in insoluble Fe3+ form in soil. Fe3O4 have been recently found as growth promoting factor in plants. To understand, a sand pot experiment was conducted in completely randomized design (control, cadmium, 20 mg/L Fe3O4 nanoparticles,40 mg/L Fe3O4 nanoparticles, 20 mg/L Fe3O4 nanoparticles + cadmium, 40 mg/L Fe3O4 nanoparticles + cadmium) to study the mitigating role of Fe3O4 nanoparticles on cadmium stress in three Raphanus sativus cultivars namely i.e., MOL SANO, MOL HOL PARI, MOL DAQ WAL. The plant growth, physiological and biochemical parameters i.e.,shoot length, shoot fresh weight, shoot dry weight, root length, root fresh and dry weight, MDA content, soluble protein contents, APX, CAT, POD activities and ion concentrations, membrane permeability, chlorophyll a, chlorophyll b and anthocyanin content, respectively were studied. The results displayed that cadmium stress remarkably reduces all growth, physiological and biochemical parameters for allcultivars under investigation. However, Fe3O4 nanoparticles mitigated the adverse effect of cadmium by improving growth, biochemical and physiological attributes in all radish cultivars. While, 20 mg/L Fe3O4 nanoparticles have been proved to be more useful against cadmium stress. The outcome of present investigation displayed that Fe3O4 nanoparticles can be utilized for mitigating heavy metal stress.

18.
Data Brief ; 55: 110760, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39183968

RESUMEN

The ever-evolving global landscape of communication, driven by Information Technology advancements, underscores the importance of emotion detection in natural language processing. However, challenges persist in interpreting emotions within linguistically diverse contexts, notably in low-resource languages like Bengali, compounded by the emergence of Banglish. To address this gap, we present "Bengali & Banglish," an extensive dataset comprising 80,098 labelled samples across six emotion classes. Our dataset fills a void in fine-grained emotion classification for Bengali and pioneers in emotion detection in Banglish. We achieve significant performance metrics through meticulous annotation and rigorous evaluation, including a weighted F1 score of 71.30% for Bengali and 64.59% for Banglish using BanglaBERT. Also, our dataset facilitates Bengali-to-Banglish Machine Translation, contributing to the advancement of language processing models. Furthermore, our dataset demonstrates a high Cohen's Kappa score of 93.5%, affirming the reliability and consistency of our annotations. This research underscores the importance of linguistic diversity in NLP and provides a valuable resource for enhancing Emotion Detection capabilities in Bengali and Banglish across digital platforms.

19.
Front Microbiol ; 15: 1392789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011147

RESUMEN

The rapid global emergence of antibiotic resistance genes (ARGs) is a substantial public health concern. Livestock manure serves as a key reservoir for tetracycline resistance genes (TRGs), serving as a means of their transmission to soil and vegetables upon utilization as a fertilizer, consequently posing a risk to human health. The dynamics and transfer of TRGs among microorganisms in vegetables and fauna are being investigated. However, the impact of different vegetable species on acquisition of TRGs from various manure sources remains unclear. This study investigated the rhizospheres of three vegetables (carrots, tomatoes, and cucumbers) grown with chicken, sheep, and pig manure to assess TRGs and bacterial community compositions via qPCR and high-throughput sequencing techniques. Our findings revealed that tomatoes exhibited the highest accumulation of TRGs, followed by cucumbers and carrots. Pig manure resulted in the highest TRG levels, compared to chicken and sheep manure, in that order. Bacterial community analyses revealed distinct effects of manure sources and the selective behavior of individual vegetable species in shaping bacterial communities, explaining 12.2% of TRG variation. Firmicutes had a positive correlation with most TRGs and the intl1 gene among the dominant phyla. Notably, both the types of vegetables and manures significantly influenced the abundance of the intl1 gene and soil properties, exhibiting strong correlations with TRGs and elucidating 30% and 17.7% of TRG variance, respectively. Our study delineated vegetables accumulating TRGs from manure-amended soils, resulting in significant risk to human health. Moreover, we elucidated the pivotal roles of bacterial communities, soil characteristics, and the intl1 gene in TRG fate and dissemination. These insights emphasize the need for integrated strategies to reduce selection pressure and disrupt TRG transmission routes, ultimately curbing the transmission of tetracycline resistance genes to vegetables.

20.
Sci Rep ; 14(1): 20695, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237653

RESUMEN

Mountain landscapes can be fragmented due to various human activities such as tourism, road construction, urbanization, and agriculture. It can also be due to natural factors such as flash floods, glacial lake outbursts, land sliding, and climate change such as rising temperatures, heavy rains, or drought.The study's objective was to analyze the mountain landscape ecology of Pir Chinasi National Park under anthropogenic influence and investigate the impact of anthropogenic activities on the vegetation. This study observed spatiotemporal changes in vegetation due to human activities and associated climate change for the past 25 years (1995-2020) around Pir Chinasi National Park, Muzaffrabad, Pakistan. A structured questionnaire was distributed to 200 residents to evaluate their perceptions of land use and its effects on local vegetation. The findings reveal that 60% of respondents perceived spatiotemporal pressure on the park. On the other hand, the Landsat-oriented Normalized Difference Vegetation Index (NDVI) was utilized for the less than 10% cloud-covered images of Landsat 5, 7, and 8 to investigate the vegetation degradation trends of the study area. During the entire study period, the mean maximum NDVI was approximately 0.28 in 1995, whereas the mean minimum NDVI was - 2.8 in 2010. QGIS 3.8.2 was used for the data presentation. The impact of temperature on vegetation was also investigated for the study period and increasing temperature trends were observed. The study found that 10.81% (1469.08 km2) of the area experienced substantial deterioration, while 23.57% (3202.39 km2) experienced minor degradation. The total area of degraded lands was 34.38% (or 4671.47 km2). A marginal improvement in plant cover was observed in 24.88% of the regions, while 9.69% of the regions experienced a major improvement. According to the NDVI-Rainfall relationships, the area was found to be significantly impacted by human pressures and activities (r ≤ 0.50) driving vegetation changes covering 24.67% of the total area (3352.03 km2). The area under the influence of climatic variability and change (r ≥ 0.50 ≥ 0.90) accounted for 55.84% (7587.26 km2), and the area under both climatic and human stressors (r ≥ 0.50 < 0.70) was 64%. Sustainable land management practices of conservation tillage, integrated pest management, and agroforestry help preserve soil health, water quality, and biodiversity while reducing erosion, pollution, and the degradation of natural resources. landscape restoration projects of reforestation, wetland restoration, soil erosion control, and the removal of invasive species are essential to achieve land degradation neutrality at the watershed scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA