Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Langmuir ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38330073

RESUMEN

The oxygen sensors with limiting current derived from a dense diffusion barrier have an excellent advantage of detecting oxygen partial pressure by controlling the ratio of air and fuel in combustion environments. Therefore, AgNb1-xTixO3-δ (wherein x varies from 0.1 to 0.3) was prepared as such a dense diffusion barrier layer for sensor application. Among the investigated compositions as a new condensed barrier for the diffusion of sensors, AgNb1-xTixO3-δ (x = 0.1, 0.2, 0.3) exhibits oxygen ionic conductivities from 1.37 × 10-4 to 5.78 × 10-3 S·cm-1 in the temperature range of 600-900 °C and outstanding stable electrochemical properties. Herein, we employ these novel materials as dense diffusion barriers and 8 mol % zirconia stabilized by yttria (8YSZ) as a solid-state electrolyte for the fabrication of the oxygen sensors with limiting current. We observed a direct connection between the limiting current and oxygen content within the interval of 0.5-5.0 mol % at 800 °C and a low working voltage. The increase of Ti-doping amount in AgNbO3 accelerates the sensing response to oxygen gas and promotes the service life of the sensor.

2.
Langmuir ; 40(14): 7560-7568, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38553424

RESUMEN

It is essential and challenging to develop green and cost-effective solar cells to meet the energy demands. Solar cells with a perovskite light-harvesting layer are the most promising technology to propel the world toward next-generation solar energy. Formamidinium lead tri-iodide (FAPbI3)-based perovskite solar cells (F-PSCs), with their considerable performance, offer cost-effective solar cells. One of the major issues that the PSC community is now experiencing is the stability of α-FAPbI3 at relatively low temperatures. In this study, we fabricated FAPbI3-PSCs using cyclohexane (CHX) material via a two-step deposition method. For this purpose, CHX is added to the formamidinium iodide:methylammonium chloride (FAI:MACl) solution as an additive and used to form a better FAPbI3 layer by controlling the reaction between FAI and lead iodide (PbI2). The CHX additive induces the reaction of undercoordinated Pb2+ with FAI material and produces an α-FAPbI3 layer with low charge traps and large domains. In addition, the CHX-containing FAPbI3 layers show higher carrier lifetimes and facilitate carrier transfer in F-PSCs. The CHX-modified F-PSCs yield a high champion efficiency of 22.84% with improved ambient and thermal stability behavior. This breakthrough provides valuable findings regarding the formation of a desirable FAPbI3 layer for photovoltaic applications and holds promise for the industrialization of F-PSCs.

3.
Phys Chem Chem Phys ; 26(4): 3229-3239, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38193862

RESUMEN

Perovskites composed of inorganic cesium (Cs) halide provide a route to thermally resistant solar cells. Nevertheless, the use of hole-transporting layers (HTLs) with hydrophobic additives is constrained by moisture-induced phase deterioration. Due to significant electrical loss, dopant-free HTLs are unable to produce practical solar cells. In this article, we designed a two-dimensional 1,3,6,8-tetrakis[5-(N,N-di(p-(methylthio)phenyl)amino-p-phenyl)-thiophen-2-yl]pyrene (termed SMe-TATPyr) molecule as a new HTL to regulate electrical loss in lead-free perovskite solar cells (PSCs). We optimized the power conversion efficiency (PCE) of PSCs based on mixed tin (Sn)/germanium (Ge) halide perovskite (CsSn0.5Ge0.5I3) by exploring different factors, such as the deep and shallow levels of defects, density of states at the valence band (NV), thickness of the perovskite film, p-type doping concentration (NA) of HTL, the series and shunt resistances, and so on. We carried out comparative research by employing the 1D-SCAPS (a solar cell capacitance simulator) analysis tool. Through optimization of the PSC, we obtained the highest parameters in the simulated solar cell structure of fluorine tin oxide (FTO)/titanium dioxide (TiO2)/CsSn0.5Ge0.5I3/SMe-TATPyr/gold (Au), and the PCE reached up to 20% with a fill factor (FF) of 81.89%.

4.
Phys Chem Chem Phys ; 25(6): 5122-5129, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722994

RESUMEN

Using an ab initio framework and non-equilibrium Green's function technique, the effect of hydrogen and fluorine atom passivation on the electronic and transport properties of borophene nanoribbons (BNRs) are explored. For zigzag edge states, we have explored all potentially stable combinations of hydrogen and fluorine passivation. Fluorine passivation leads to thermodynamically stable structures with improved stability for the increased concentration of F atoms, according to our binding energy (Eb) calculations. Furthermore, density-of-states and dispersion relation (E-k structures) computations indicate that fluorine-passivated BNRs are primarily metallic in nature. We proposed these nanostructures for their use in metal interconnects because of their increased metallicity. We have used the typical two-probe setup to calculate the critical parameters like quantum resistance (RQ), kinetic inductance (LK), and quantum capacitance (CQ) to evaluate their performance as metal interconnects. Because they have the lowest estimated values of LK = 26.1 nH µm-1, and CQ = 399 pF cm-1, the zigzag BNRs (ZBNRs) with two edge fluorinated (F-BNR-F) nanostructures may be considered as a promising candidate for nanoscale interconnect applications.

5.
Phys Chem Chem Phys ; 25(24): 16459-16468, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306330

RESUMEN

Enhanced radiative efficiency, long carrier lifetimes, and high carrier mobilities are hallmarks of perovskite solar cells. Considering this, complete cells experience large nonradiative recombination losses that restrict their VOC considerably below the Shockley-Queisser limit. Auger recombination, which involves two free photo-induced carriers and a trapped charge carrier, is one potential mechanism. Herein, the effects of Auger capture coefficients in mixed-cation perovskites are analyzed employing SCAPS-1D computations. It is demonstrated that VOC and FF are severely decreased with an increase in the acceptor concentration and Auger capture coefficients of perovskites, thus reducing the device performance. When the Auger capture coefficient is increased to 10-20 cm6 s-1 under the acceptor concentration of 1016 cm-3, the performance is drastically lowered from 21.5% (without taking Auger recombination into account) to 9.9%. The findings suggest that in order to increase the efficiency of perovskite solar cells and prevent the effects of Auger recombination, the Auger recombination coefficients should be less than 10-24 cm6 s-1.

6.
Molecules ; 28(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049692

RESUMEN

A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff's-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications.


Asunto(s)
Complejos de Coordinación , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Bases de Schiff/farmacología , Bases de Schiff/química , Valina , Escherichia coli , Staphylococcus aureus , Metales/química , Antibacterianos/farmacología , Antibacterianos/química , Ligandos , Cobre/química
7.
Molecules ; 28(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985473

RESUMEN

The goal of the current work was to create an antibacterial agent by using polycaprolactone/chitosan (PCL/CH) nanofibers loaded with Cordia myxa fruit extract (CMFE) as an antimicrobial agent for wound dressing. Several characteristics, including morphological, physicomechanical, and mechanical characteristics, surface wettability, antibacterial activity, cell viability, and in vitro drug release, were investigated. The inclusion of CMFE in PCL/CH led to increased swelling capability and maximum weight loss. The SEM images of the PCL/CH/CMFE mat showed a uniform topology free of beads and an average fiber diameter of 195.378 nm. Excellent antimicrobial activity was shown towards Escherichia coli (31.34 ± 0.42 mm), Salmonella enterica (30.27 ± 0.57 mm), Staphylococcus aureus (21.31 ± 0.17 mm), Bacillus subtilis (27.53 ± 1.53 mm), and Pseudomonas aeruginosa (22.17 ± 0.12 mm) based on the inhibition zone assay. The sample containing 5 wt% CMFE had a lower water contact angle (47 ± 3.7°), high porosity, and high swelling compared to the neat mat. The release of the 5% CMFE-loaded mat was proven to be based on anomalous non-Fickian diffusion using the Korsmeyer-Peppas model. Compared to the pure PCL membrane, the PCL-CH/CMFE membrane exhibited suitable cytocompatibility on L929 cells. In conclusion, the fabricated antimicrobial nanofibrous films demonstrated high bioavailability, with suitable properties that can be used in wound dressings.


Asunto(s)
Quitosano , Cordia , Nanofibras , Frutas , Antibacterianos/farmacología , Poliésteres/farmacología , Vendajes
8.
RSC Adv ; 14(36): 26066-26076, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39161436

RESUMEN

Enhancing the photocatalytic activity of ZnFe2O4 with a good energy band gap to degrade industrial waste under sunlight illumination can help to develop green environments. Here, to improve the photocatalytic efficiency of ZnFe2O4 ferrites, they were merged with polyaniline (PAni) and silver (Ag) nanoparticles to synthesize Ag@ZnFe2O4-PAni plasmonic nanostructures. The as-synthesized nanostructures were characterized using a series of advanced characterization techniques to confirm successful formation and investigate photocatalytic improvement origins. It was found that incorporating Ag NPs along with the PAni to ZnFe2O4 increases its absorption power and red-shifts its energy band gap, which increases the electron-hole production rate by exposure to light in ZnFe2O4. Contribution of the surface plasmon resonance effect of Ag NPs and conjugated double bonds of PAni to charge transfer mechanisms in Ag@ZnFe2O4-PAni material increased charge separation during photocatalytic process, boosting the photodegradation performance of ZnFe2O4.

9.
Sci Rep ; 14(1): 19882, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191833

RESUMEN

This research explores the feasibility of using a nanocomposite from multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) for thermal engineering applications. The hybrid nanocomposites were suspended in water at various volumetric concentrations. Their heat transfer and pressure drop characteristics were analyzed using computational fluid dynamics and artificial neural network models. The study examined flow regimes with Reynolds numbers between 5000 and 17,000, inlet fluid temperatures ranging from 293.15 to 333.15 K, and concentrations from 0.01 to 0.2% by volume. The numerical results were validated against empirical correlations for heat transfer coefficient and pressure drop, showing an acceptable average error. The findings revealed that the heat transfer coefficient and pressure drop increased significantly with higher inlet temperatures and concentrations, achieving approximately 45.22% and 452.90%, respectively. These results suggested that MWCNTs-GNPs nanocomposites hold promise for enhancing the performance of thermal systems, offering a potential pathway for developing and optimizing advanced thermal engineering solutions.

10.
RSC Adv ; 14(3): 1924-1938, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38192318

RESUMEN

The remarkable performance of copper indium gallium selenide (CIGS)-based double heterojunction (DH) photovoltaic cells is presented in this work. To increase all photovoltaic performance parameters, in this investigation, a novel solar cell structure (FTO/SnS2/CIGS/Sb2S3/Ni) is explored by utilizing the SCAPS-1D simulation software. Thicknesses of the buffer, absorber and back surface field (BSF) layers, acceptor density, defect density, capacitance-voltage (C-V), interface defect density, rates of generation and recombination, operating temperature, current density, and quantum efficiency have been investigated for the proposed solar devices with and without BSF. The presence of the BSF layer significantly influences the device's performance parameters including short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE). After optimization, the simulation results of a conventional CIGS cell (FTO/SnS2/CIGS/Ni) have shown a PCE of 22.14% with Voc of 0.91 V, Jsc of 28.21 mA cm-2, and FF of 86.31. Conversely, the PCE is improved to 31.15% with Voc of 1.08 V, Jsc of 33.75 mA cm-2, and FF of 88.50 by introducing the Sb2S3 BSF in the structure of FTO/SnS2/CIGS/Sb2S3/Ni. These findings of the proposed CIGS-based double heterojunction (DH) solar cells offer an innovative method for realization of high-efficiency solar cells that are more promising than the previously reported traditional designs.

11.
ACS Omega ; 9(18): 19824-19836, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737037

RESUMEN

Inorganic cubic rubidium-lead-halide perovskites have attracted considerable attention owing to their structural, electronic, and unique optical properties. In this study, novel rubidium-lead-bromide (RbPbBr3)-based hybrid perovskite solar cells (HPSCs) with several high-band-gap chalcogenide electron transport layers (ETLs) of In2S3, WS2, and SnS2 were studied by density functional theory (DFT) and using the SCAPS-1D simulator. Initially, the band gap and optical performance were computed using DFT, and these results were utilized for the first time in the SCAPS-1D simulator. Furthermore, the impact of different major influencing parameters, that is, the thickness of the layer, bulk defect density, doping concentration, and defect density of interfaces, including the working temperature, were also investigated and unveiled. Further, a study on an optimized device with the most potential ETL (SnS2) layer was performed systematically. Finally, a comparative study of different reported heterostructures was performed to explore the benchmark of the most recent efficient RbPbBr3-based photovoltaics. The highest power conversion efficiency (PCE) was 29.75% for the SnS2 ETL with Voc of 0.9789 V, Jsc of 34.57863 mA cm-2, and fill factor (FF) of 87.91%, while the PCEs of 21.15 and 24.57% were obtained for In2S3 and WS2 ETLs, respectively. The electron-hole generation, recombination rates, and quantum efficiency (QE) characteristics were also investigated in detail. Thus, the SnS2 ETL shows strong potential for use in RbPbBr3-based hybrid perovskite high-performance photovoltaic devices.

12.
IEEE Trans Nanobioscience ; 22(1): 182-191, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35544508

RESUMEN

This work reports a biosensor based on the dual cavity dielectric modulated ferroelectric charge plasma Tunnel FET (FE-CP-TFET) with enhanced sensitivity. By incorporating underlap and dielectric modulation phenomena, ultra sensitive, and label-free detection of biomolecules is achieved. The cavity is carved underneath the source-gate dielectric for the immobilization of the biomolecules. The ferroelectric (FE) material is used as a gate stack to realize a negative capacitance effect to amplify the low gate voltage. To avoid the issues with metallurgical doping such as random dopant fluctuations (RDFs), ambipolar conduction, and increased thermal budget, the charge plasma concept is deployed. Based on our exhaustive ATLAS 2D TCAD study, the electric field, hole concentration, and energy band diagram of the proposed device are critically analyzed to provide a better insight into the biosensor working mechanism. Here, two different figures-of merits (FOMs) for the proposed biosensor are investigated such as sensitivity and linearity. Sensitivity has been measured in terms of drain current, [Formula: see text] to [Formula: see text] ratio, electric field, and transconductance sensitivity. Linearity analysis of the proposed structure includes [Formula: see text] ratio. The reported biosensor is capable of detecting several biomolecules such as (neutral and charged as well) Streptavidin (2.1), 3-aminopropyltriethoxysilane (APTES) (K =3.57 ), Keratin (K =8 ), T7 (K =6.3 ) and Gelatin (K =12 ). It was observed that the optimized cavity structure demonstrates high drain current sensitivity ( 2.7×108 ) as well as high [Formula: see text] sensitivity ( 1.45×108 ). Further, the linearity analysis shows that the Pearson's coefficient of both structures have been achieved as ( r2 ≥ 0.8 ). It is conferred from the results that our biosensor can be a better alternative for the detection of the various neutral and charged biomolecules.


Asunto(s)
Técnicas Biosensibles , Gases em Plasma , Electricidad
13.
J Mol Graph Model ; 118: 108335, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36183685

RESUMEN

In the paper, the wettability of different phases of TiO2 thin films (anatase, brookite, and rutile) have been studied using molecular-dynamics simulation. The principle of micro-wetting is discussed. The simulation results show that the contact angle decreases upon increasing the interaction energy between the water and the titanium dioxide interface during the wetting process. The values of contact angles from large to small are: rutile, brookite and anatase. The calculated equilibrium contact angles are 73.9°, 59.2°, and 43.7°, respectively. The reason is that the structural connection and the arrangement of the surface microtopography directly affect the movement of water droplets on the surface of the material, thus affecting the wettability. In addition, the amount of the interaction energy and the radial distribution function between these three interfaces and the droplets are calculated, and the density change of the droplet is analyzed further which indicate the difference in wetting between the three crystal structures. At the same time, by simulating and comparing the wettability of the trench surface and the original surface of anatase, it is inferred that the rough interface increases the contact angle with the droplet and reduces the wettability.

14.
RSC Adv ; 13(13): 8683-8691, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936829

RESUMEN

Perovskite materials play a significant role in oxygen sensors due to their fascinating electrical and ionic conductivities. The sol-gel technique was employed to prepare various compositions of B-site-deficient Fe-doped SrTiO3 (iron-doped strontium titanate) or Sr(Ti0.6Fe0.4)1-x O3-δ , where x = 0.01, 0.02, and 0.03. The XRD results revealed that the principle crystalline phase of the samples was the cubic perovskite structure. The B-site deficiency improved the ionic and total conductivities of Sr(Ti0.6Fe0.4)1-x O3-δ . A small polaron conduction behavior occurred in the total electrical conductivity. The XPS results showed that the oxygen vacancy value decreased with the rise in the amount of B-site deficiencies. A lower B-site deficiency amount could produce more oxygen vacancies in the lattice but resulted in the ordering of vacancies and then lower ionic conductivity. The aging behavior was caused by the ordering of oxygen vacancies and resulted in a degeneration of electrical features under a long service time. Conversely, augmentation of the B-site deficiency amount inhibited the tendency for the ordering of oxygen vacancies and then promoted the electrical performance under a long usage time. The conduction mechanism of oxygen ions through oxygen vacancies was thoroughly investigated and discussed. The current study presents a feasible approach to ameliorate the physical features of conductors through doping the B-site of the perovskite layer with Fe, which would be a fruitful approach for numerous applications, including oxygen sensors and fuel cells anodes.

15.
PLoS One ; 18(7): e0288044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37406006

RESUMEN

The retrieval of important information from a dataset requires applying a special data mining technique known as data clustering (DC). DC classifies similar objects into a groups of similar characteristics. Clustering involves grouping the data around k-cluster centres that typically are selected randomly. Recently, the issues behind DC have called for a search for an alternative solution. Recently, a nature-based optimization algorithm named Black Hole Algorithm (BHA) was developed to address the several well-known optimization problems. The BHA is a metaheuristic (population-based) that mimics the event around the natural phenomena of black holes, whereby an individual star represents the potential solutions revolving around the solution space. The original BHA algorithm showed better performance compared to other algorithms when applied to a benchmark dataset, despite its poor exploration capability. Hence, this paper presents a multi-population version of BHA as a generalization of the BHA called MBHA wherein the performance of the algorithm is not dependent on the best-found solution but a set of generated best solutions. The method formulated was subjected to testing using a set of nine widespread and popular benchmark test functions. The ensuing experimental outcomes indicated the highly precise results generated by the method compared to BHA and comparable algorithms in the study, as well as excellent robustness. Furthermore, the proposed MBHA achieved a high rate of convergence on six real datasets (collected from the UCL machine learning lab), making it suitable for DC problems. Lastly, the evaluations conclusively indicated the appropriateness of the proposed algorithm to resolve DC issues.


Asunto(s)
Algoritmos , Aprendizaje Automático , Análisis por Conglomerados , Minería de Datos/métodos , Benchmarking
16.
ACS Omega ; 8(38): 34458-34470, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779929

RESUMEN

Some new transition metal complexes were prepared by reacting metal(II) salts with Schiff base azines, which were prepared via condensation of 5-(diethylamino) salicylaldehyde and hydrazine with pyrrole-2-carbaldehyde. Their structures were confirmed based on CHN, UV-visible, FT-IR, and EPR measurements. The complexes were also assessed for their antibacterial, antioxidant, and anticancer properties. Some of these chemicals were said to be extraordinarily effective in this respect. The antibacterial activities of the complexes in vitro demonstrated their potential, although the [Cu(L)(bpy] complex was suggested to exhibit moderate activity against pathogens compared to all other in this series. The cytotoxic activity of the prepared analogues showed better cell viability compared with standard cisplatin. Moreover, there is a good agreement between the experimental and theoretical findings from docking and theoretical investigations done using DFT at the B3LYP level.

17.
RSC Adv ; 13(34): 23514-23537, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37546214

RESUMEN

Lead toxicity is a barrier to the widespread commercial manufacture of lead halide perovskites and their use in solar photovoltaic (PV) devices. Eco-friendly lead-free perovskite solar cells (PSCs) have been developed using certain unique non- or low-toxic perovskite materials. In this context, Sn-based perovskites have been identified as promising substitutes for Pb-based perovskites due to their similar characteristics. However, Sn-based perovskites suffer from chemical instability, which affects their performance in PSCs. This study employs theoretical simulations to identify ways to improve the efficiency of Sn-based PSCs. The simulations were conducted using the SCAPS-1D software, and a lead-free, non-toxic, and inorganic perovskite absorber layer (PAL), i.e. CsSnI3 was used in the PSC design. The properties of the hole transport layer (HTL) and electron transport layer (ETL) were tuned to optimize the performance of the device. Apart from this, seven different combinations of HTLs were studied, and the best-performing combination was found to be ITO/PCBM/CsSnI3/CFTS/Se, which achieved a power conversion efficiency (PCE) of 24.73%, an open-circuit voltage (VOC) of 0.872 V, a short-circuit current density (JSC) of 33.99 mA cm-2 and a fill factor (FF) of 83.46%. The second highest PCE of 18.41% was achieved by the ITO/PCBM/CsSnI3/CuSCN/Se structure. In addition to optimizing the structure of the PSC, this study also analyzes the current density-voltage (J-V) along with quantum efficiency (QE), as well as the impact of series resistance, shunt resistance, and working temperature, on PV performance. The results demonstrate the potential of the optimized structure identified in this study to enhance the standard PCE of PSCs. Overall, this study provides important insights into the development of lead-free absorber materials and highlights the potential of using CsSnI3 as the PAL in PSCs. The optimized structure identified in this study can be used as a base for further research to improve the efficiency of Sn-based PSCs.

18.
RSC Adv ; 13(30): 21044-21062, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448634

RESUMEN

Perovskite solar cells (PSCs) have become a possible alternative to traditional photovoltaic devices for their high performance, low cost, and ease of fabrication. Here in this study, the SCAPS-1D simulator numerically simulates and optimizes CsPbBr3-based PSCs under the optimum illumination situation. We explore the impact of different back metal contacts (BMCs), including Cu, Ag, Fe, C, Au, W, Pt, Se, Ni, and Pd combined with the TiO2 electron transport layer (ETL) and CFTS hole transport layer (HTL), on the performance of the devices. After optimization, the ITO/TiO2/CsPbBr3/CFTS/Ni structure showed a maximum power conversion efficiency (PCE or η) of 13.86%, with Ni as a more cost-effective alternative to Au. After the optimization of the BMC the rest of the investigation is conducted both with and without HTL mode. We investigate the impact of changing the thickness and the comparison with acceptor and defect densities (with and without HTL) of the CsPbBr3 perovskite absorber layer on the PSC performance. Finally, we optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL, along with the interfacial defect densities at HTL/absorber and absorber/ETL interfaces to improve the PCE of the device; and the effect of variation of these parameters is also investigated both with and without HTL connected. The final optimized configuration achieved a VOC of 0.87 V, JSC of 27.57 mA cm-2, FF of 85.93%, and PCE of 20.73%. To further investigate the performance of the optimized device, we explore the impact of the temperature, shunt resistance, series resistance, capacitance, generation rate, recombination rate, Mott-Schottky, JV, and QE features of both with and without HTL connected. The optimized device offers the best thermal stability at a temperature of 300 K. Our study highlights the potential of CsPbBr3-based PSCs and provides valuable insights for their optimization and future development.

19.
RSC Adv ; 13(45): 31330-31345, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37908652

RESUMEN

Strontium antimony iodide (Sr3SbI3) is one of the emerging absorbers materials owing to its intriguing structural, electronic, and optical properties for efficient and cost-effective solar cell applications. A comprehensive investigation on the structural, optical, and electronic characterization of Sr3SbI3 and its subsequent applications in heterostructure solar cells have been studied theoretically. Initially, the optoelectronic parameters of the novel Sr3SbI3 absorber, and the possible electron transport layer (ETL) of tin sulfide (SnS2), zinc sulfide (ZnS), and indium sulfide (In2S3) including various interface layers were obtained by DFT study. Afterward, the photovoltaic (PV) performance of Sr3SbI3 absorber-based cell structures with SnS2, ZnS, and In2S3 as ETLs were systematically investigated at varying layer thickness, defect density bulk, doping density, interface density of active materials including working temperature, and thereby, optimized PV parameters were achieved using SCAPS-1D simulator. Additionally, the quantum efficiency (QE), current density-voltage (J-V), and generation and recombination rates of photocarriers were determined. The maximum power conversion efficiency (PCE) of 28.05% with JSC of 34.67 mA cm-2, FF of 87.31%, VOC of 0.93 V for SnS2 ETL was obtained with Al/FTO/SnS2/Sr3SbI3/Ni structure, while the PCE of 24.33%, and 18.40% in ZnS and In2S3 ETLs heterostructures, respectively. The findings of this study contribute to in-depth understanding of the physical, electronic, and optical properties of Sr3SbI3 absorber perovskite and SnS2, ZnS, and In2S3 ETLs. Additionally, it provides valuable insights into the potential of Sr3SbI3 in heterostructure perovskite solar cells (PSCs), paving the pathway for further experimental design of an efficient and stable PSC devices.

20.
Biol Trace Elem Res ; 201(10): 4697-4709, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36662347

RESUMEN

This study investigated the effect of novel zinc oxide nanoparticles (ZnO NPs) biosynthesized employing Papaver somniferum leaf on oxidative stress, necrosis, and apoptosis in the leukemia cancer THP-1 cell. The obtained ZnO was examined using SEM, AFM, and TEM microscopy, which revealed an irregular spherical morphology with a size ranging from 20 to 30 nm, and the UV-vis absorbance revealed a strong absorption peak in the range of 360-370, nm confirming the production of ZnO NPs. THP-1 cells were subjected to an MTT, an EdU proliferation, a lactate dehydrogenase release tests, a reactive oxygen species (ROS) induction experiment, a DAPI staining detection assay, and a flow cytometric analysis for Annexin V to measure the effects of ZnO NPs on cancer cell growth inhibition, apoptosis, and necrosis. Our results show that ZnO NPs inhibit THP-1 line in a concentration-dependent pattern. It was observed that ZnO NPs triggered necrosis (cell death) and apoptosis in the cell line. ZnO NPs massively improved the formation of intracellular ROS, which is crucial in deactivating the development of leukemic cells. In conclusion, ZnO nanoparticles synthesized using Papaver somniferum extract have the ability to inhibit proliferation leukemic cancer cells, making them potential anticancer agents.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Papaver , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Células THP-1 , Especies Reactivas de Oxígeno/metabolismo , Papaver/metabolismo , Estrés Oxidativo , Apoptosis , Necrosis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA