Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 308(8): G664-77, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25573173

RESUMEN

Short bowel syndrome (SBS) is a devastating condition in which insufficient small intestinal surface area results in malnutrition and dependence on intravenous parenteral nutrition. There is an increasing incidence of SBS, particularly in premature babies and newborns with congenital intestinal anomalies. Tissue-engineered small intestine (TESI) offers a therapeutic alternative to the current standard treatment, intestinal transplantation, and has the potential to solve its biggest challenges, namely donor shortage and life-long immunosuppression. We have previously demonstrated that TESI can be generated from mouse and human small intestine and histologically replicates key components of native intestine. We hypothesized that TESI also recapitulates native small intestine function. Organoid units were generated from mouse or human donor intestine and implanted into genetically identical or immunodeficient host mice. After 4 wk, TESI was harvested and either fixed and paraffin embedded or immediately subjected to assays to illustrate function. We demonstrated that both mouse and human tissue-engineered small intestine grew into an appropriately polarized sphere of intact epithelium facing a lumen, contiguous with supporting mesenchyme, muscle, and stem/progenitor cells. The epithelium demonstrated major ultrastructural components, including tight junctions and microvilli, transporters, and functional brush-border and digestive enzymes. This study demonstrates that tissue-engineered small intestine possesses a well-differentiated epithelium with intact ion transporters/channels, functional brush-border enzymes, and similar ultrastructural components to native tissue, including progenitor cells, whether derived from mouse or human cells.


Asunto(s)
Digestión , Absorción Intestinal , Mucosa Intestinal/fisiología , Mucosa Intestinal/trasplante , Intestino Delgado/fisiología , Intestino Delgado/trasplante , Ingeniería de Tejidos/métodos , Animales , Acuaporinas/metabolismo , Transporte Biológico , Diferenciación Celular , Polaridad Celular , Proliferación Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/fisiología , Células Epiteliales/trasplante , Células Epiteliales/ultraestructura , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Intestino Delgado/metabolismo , Intestino Delgado/ultraestructura , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Organoides , Intercambiadores de Sodio-Hidrógeno/metabolismo , Uniones Estrechas/fisiología , Uniones Estrechas/ultraestructura , Factores de Tiempo , Técnicas de Cultivo de Tejidos
2.
PLoS One ; 11(3): e0151396, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26978773

RESUMEN

BACKGROUND: Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. METHODS: VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. RESULTS: Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. CONCLUSIONS: Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal dysfunction or disease.


Asunto(s)
Duodeno/metabolismo , Células Madre/metabolismo , Factor A de Crecimiento Endotelial Vascular/fisiología , Focos de Criptas Aberrantes/genética , Animales , Animales Lactantes , Síndrome de Fuga Capilar/genética , División Celular , Células Cultivadas , Doxiciclina/farmacología , Duodeno/irrigación sanguínea , Duodeno/citología , Duodeno/crecimiento & desarrollo , Regulación de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Microvellosidades/ultraestructura , Neovascularización Fisiológica/genética , Organoides , Proteínas Recombinantes de Fusión/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9/biosíntesis , Factor de Transcripción SOX9/genética , Células Madre/citología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/deficiencia , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
3.
Tissue Eng Part A ; 22(1-2): 53-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26414777

RESUMEN

PURPOSE: Tissue-engineered colon (TEC) might potentially replace absent or injured large intestine, but the enteric nervous system (ENS), a key component, has not been investigated. In various enteric neuropathic diseases in which the TEC is derived from aganglionic donor colon, the resulting construct might also be aganglionic, limiting tissue engineering applications in conditions such as Hirschsprung disease (HD). We hypothesized that TEC might contain a diverse population of enteric neuronal subtypes, and that aganglionic TEC can be populated by neurons and glia when supplemented with ENS progenitor cells in the form of neurospheres. MATERIALS AND METHODS: Human and murine organoid units (OU) and multicellular clusters containing epithelium and mesenchyme were isolated from both mouse and human donor tissues, including from normally innervated and aganglionic colon. The OU were seeded onto a biodegradable scaffold and implanted within a host mouse, resulting in the growth of TEC. Aganglionic murine and human OU were supplemented with cultured neurospheres to populate the absent ENS not provided by the OU to rescue the HD phenotype. RESULTS: TEC demonstrated abundant smooth muscle and clusters of neurons and glia beneath the epithelium and deeper within the mesenchyme. Motor and afferent neuronal subtypes were identified in TEC. Aganglionic OU formed TEC with absent neural elements, but neurons and glia were abundant when aganglionic OU were supplemented with ENS progenitor cells. CONCLUSION: Murine and human TEC contain key components of the ENS that were not previously identified, including glia, neurons, and fundamental neuronal subtypes. TEC derived from aganglionic colon can be populated with neurons and glia when supplemented with neurospheres. Combining tissue engineering and cellular replacement therapies represents a new strategy for treating enteric neuropathies, particularly HD.


Asunto(s)
Colon , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Ingeniería de Tejidos/métodos , Animales , Técnicas de Cultivo de Célula , Colon/citología , Colon/inervación , Colon/metabolismo , Humanos , Ratones , Ratones Noqueados
4.
PLoS One ; 11(2): e0148323, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26863115

RESUMEN

RATIONALE: Neonatal respiratory distress syndrome is a restrictive lung disease characterized by surfactant deficiency. Decreased vascular endothelial growth factor (VEGF), which demonstrates important roles in angiogenesis and vasculogenesis, has been implicated in the pathogenesis of restrictive lung diseases. Current animal models investigating VEGF in the etiology and outcomes of RDS require premature delivery, hypoxia, anatomically or temporally limited inhibition, or other supplemental interventions. Consequently, little is known about the isolated effects of chronic VEGF inhibition, started at birth, on subsequent developing lung structure and function. OBJECTIVES: To determine whether inducible, mesenchyme-specific VEGF inhibition in the neonatal mouse lung results in long-term modulation of AECII and whole lung function. METHODS: Triple transgenic mice expressing the soluble VEGF receptor sFlt-1 specifically in the mesenchyme (Dermo-1/rtTA/sFlt-1) were generated and compared to littermate controls at 3 months to determine the impact of neonatal downregulation of mesenchymal VEGF expression on lung structure, cell composition and function. Reduced tissue VEGF bioavailability has previously been demonstrated with this model. MEASUREMENTS AND MAIN RESULTS: Triple transgenic mice demonstrated restrictive lung pathology. No differences in gross vascular development or protein levels of vascular endothelial markers was noted, but there was a significant decrease in perivascular smooth muscle and type I collagen. Mutants had decreased expression levels of surfactant protein C and hypoxia inducible factor 1-alpha without a difference in number of type II pneumocytes. CONCLUSIONS: These data show that mesenchyme-specific inhibition of VEGF in neonatal mice results in late restrictive disease, making this transgenic mouse a novel model for future investigations on the consequences of neonatal RDS and potential interventions.


Asunto(s)
Enfermedades Pulmonares/metabolismo , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Mesodermo/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis , Peso Corporal , Colágeno/química , Femenino , Regulación de la Expresión Génica , Hidroxiprolina/química , Modelos Lineales , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Pruebas de Función Respiratoria , Transducción de Señal , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA