Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biophys J ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042986

RESUMEN

KCNMA1-linked channelopathy is a neurological disorder characterized by seizures, motor abnormalities, and neurodevelopmental disabilities. The disease mechanisms are predicted to result from alterations in KCNMA1-encoded BK K+ channel activity; however, only a subset of the patient-associated variants have been functionally studied. The localization of these variants within the tertiary structure or evaluation by pathogenicity algorithms has not been systematically assessed. In this study, 82 nonsynonymous patient-associated KCNMA1 variants were mapped within the BK channel protein. Fifty-three variants localized within cryoelectron microscopy-resolved structures, including 21 classified as either gain of function (GOF) or loss of function (LOF) in BK channel activity. Clusters of LOF variants were identified in the pore, the AC region (RCK1), and near the Ca2+ bowl (RCK2), overlapping with sites of pharmacological or endogenous modulation. However, no clustering was found for GOF variants. To further understand variants of uncertain significance (VUSs), assessments by multiple standard pathogenicity algorithms were compared, and new thresholds for sensitivity and specificity were established from confirmed GOF and LOF variants. An ensemble algorithm was constructed (KCNMA1 meta score (KMS)), consisting of a weighted summation of this trained dataset combined with a structural component derived from the Ca2+-bound and unbound BK channels. KMS assessment differed from the highest-performing individual algorithm (REVEL) at 10 VUS residues, and a subset were studied further by electrophysiology in HEK293 cells. M578T, E656A, and D965V (KMS+;REVEL-) were confirmed to alter BK channel properties in voltage-clamp recordings, and D800Y (KMS-;REVEL+) was assessed as benign under the test conditions. However, KMS failed to accurately assess K457E. These combined results reveal the distribution of potentially disease-causing KCNMA1 variants within BK channel functional domains and pathogenicity evaluation for VUSs, suggesting strategies for improving channel-level predictions in future studies by building on ensemble algorithms such as KMS.

2.
Proc Natl Acad Sci U S A ; 115(32): 8203-8208, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038023

RESUMEN

Neurons encode electrical signals with critically tuned voltage-gated ion channels and enzymes. Dedicated voltage sensor domains (VSDs) in these membrane proteins activate coordinately with an unresolved structural change. Such change conveys the transmembrane translocation of four positively charged arginine side chains, the voltage-sensing residues (VSRs; R1-R4). Countercharges and lipid phosphohead groups likely stabilize these VSRs within the low-dielectric core of the protein. However, the role of hydration, a sign-independent charge stabilizer, remains unclear. We replaced all VSRs and their neighboring residues with negatively charged aspartates in a voltage-gated potassium channel. The ensuing mild functional effects indicate that hydration is also important in VSR stabilization. The voltage dependency of the VSR aspartate variants approached the expected arithmetic summation of charges at VSR positions, as if negative and positive side chains faced similar pathways. In contrast, aspartates introduced between R2 and R3 did not affect voltage dependence as if the side chains moved outside the electric field or together with it, undergoing a large displacement and volumetric remodeling. Accordingly, VSR performed osmotic work at both internal and external aqueous interfaces. Individual VSR contributions to volumetric works approached arithmetical additivity but were largely dissimilar. While R1 and R4 displaced small volumes, R2 and R3 volumetric works were massive and vectorially opposed, favoring large aqueous remodeling during VSD activation. These diverse volumetric works are, at least for R2 and R3, not compatible with VSR translocation across a unique stationary charge transfer center. Instead, VSRs may follow separated pathways across a fluctuating low-dielectric septum.


Asunto(s)
Ácido Aspártico/química , Activación del Canal Iónico , Dominios Proteicos , Canales de Potasio de la Superfamilia Shaker/química , Potenciales de Acción , Secuencia de Aminoácidos/genética , Animales , Arginina/química , Arginina/genética , Arginina/metabolismo , Ácido Aspártico/genética , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Oocitos , Ósmosis , Técnicas de Placa-Clamp , Canales de Potasio de la Superfamilia Shaker/genética , Electricidad Estática , Agua/química , Xenopus
3.
J Neurophysiol ; 123(2): 560-570, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31851553

RESUMEN

KCNMA1, encoding the voltage- and calcium-activated potassium channel, has a pivotal role in brain physiology. Mutations in KCNMA1 are associated with epilepsy and/or dyskinesia (PNKD3). Two KCNMA1 mutations correlated with these phenotypes, D434G and N999S, were previously identified as producing gain-of-function (GOF) effects on BK channel activity. Three new patients have been reported harboring N999S, one carrying a second mutation, R1128W, but the effects of these mutations have not yet been reported under physiological K+ conditions or compared to D434G. In this study, we characterize N999S, the novel N999S/R1128W double mutation, and D434G in a brain BK channel splice variant, comparing the effects on BK current properties under a physiological K+ gradient with action potential voltage commands. N999S, N999S/R1128W, and D434G cDNAs were expressed in HEK293T cells and characterized by patch-clamp electrophysiology. N999S BK currents were shifted to negative potentials, with faster activation and slower deactivation compared with wild type (WT) and D434G. The double mutation N999S/R1128W did not show any additional changes in current properties compared with N999S alone. The antiepileptic drug acetazolamide was assessed for its ability to directly modulate WT and N999S channels. Neither the WT nor N999S channels were sensitive to the antiepileptic drug acetazolamide, but both were sensitive to the inhibitor paxilline. We conclude that N999S is a strong GOF mutation that surpasses the D434G phenotype, without mitigation by R1128W. Acetazolamide has no direct modulatory action on either WT or N999S channels, indicating that its use may not be contraindicated in patients harboring GOF KCNMA1 mutations.NEW & NOTEWORTHYKCNMA1-linked channelopathy is a new neurological disorder characterized by mutations in the BK voltage- and calcium-activated potassium channel. The epilepsy- and dyskinesia-associated gain-of-function mutations N999S and D434G comprise the largest number of patients in the cohort. This study provides the first direct comparison between D434G and N999S BK channel properties as well as a novel double mutation, N999S/R1128W, from another patient, defining the functional effects during an action potential stimulus.


Asunto(s)
Discinesias/genética , Fenómenos Electrofisiológicos/fisiología , Epilepsia/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Acetazolamida/farmacología , Anticonvulsivantes/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Mutación con Ganancia de Función , Humanos , Indoles/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Técnicas de Placa-Clamp
4.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37546746

RESUMEN

KCNMA1-linked channelopathy is a neurological disorder characterized by seizures, motor abnormalities, and neurodevelopmental disabilities. The disease mechanisms are predicted to result from alterations in KCNMA1-encoded BK K+ channel activity; however, only a subset of the patient-associated variants have been functionally studied. The localization of these variants within the tertiary structure or evaluation by pathogenicity algorithms has not been systematically assessed. In this study, 82 nonsynonymous patient-associated KCNMA1 variants were mapped within the BK channel protein. Fifty-three variants localized within cryo-EM resolved structures, including 21 classified as either gain-of-function (GOF) or loss-of-function (LOF) in BK channel activity. Clusters of LOF variants were identified in the pore, the AC region (RCK1), and near the Ca 2+ bowl (RCK2), overlapping with sites of pharmacological or endogenous modulation. However, no clustering was found for GOF variants. To further understand variants of uncertain significance (VUS), assessments by multiple standard pathogenicity algorithms were compared, and new thresholds for sensitivity and specificity were established from confirmed GOF and LOF variants. An ensemble algorithm was constructed (KCNMA1 Meta Score), consisting of a weighted summation of this trained dataset combined with a structural component derived from the Ca 2+ bound and unbound BK channels. KMS assessment differed from the highest performing individual algorithm (REVEL) at 10 VUS residues, and a subset were studied further by electrophysiology in HEK293 cells. M578T, E656A, and D965V (KMS+;REVEL-) were confirmed to alter BK channel properties in voltage-clamp recordings, and D800Y (KMS-;REVEL+) was assessed as benign under the test conditions. However, KMS failed to accurately assess K457E. These combined results reveal the distribution of potentially disease-causing KCNMA1 variants within BK channel functional domains and pathogenicity evaluation for VUS, suggesting strategies for improving channel-level predictions in future studies by building on ensemble algorithms such as KMS.

5.
J Neurosci ; 31(12): 4709-13, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21430169

RESUMEN

Synaptic activity is followed within seconds by a local surge in lactate concentration, a phenomenon that underlies functional magnetic resonance imaging and whose causal mechanisms are unclear, partly because of the limited spatiotemporal resolution of standard measurement techniques. Using a novel Förster resonance energy transfer-based method that allows real-time measurement of the glycolytic rate in single cells, we have studied mouse astrocytes in search for the mechanisms responsible for the lactate surge. Consistent with previous measurements with isotopic 2-deoxyglucose, glutamate was observed to stimulate glycolysis in cultured astrocytes, but the response appeared only after a lag period of several minutes. Na(+) overloads elicited by engagement of the Na(+)-glutamate cotransporter with d-aspartate or application of the Na(+) ionophore gramicidin also failed to stimulate glycolysis in the short term. In marked contrast, K(+) stimulated astrocytic glycolysis by fourfold within seconds, an effect that was observed at low millimolar concentrations and was also present in organotypic hippocampal slices. After removal of the agonists, the stimulation by K(+) ended immediately but the stimulation by glutamate persisted unabated for >20 min. Both stimulations required an active Na(+)/K(+) ATPase pump. By showing that small rises in extracellular K(+) mediate short-term, reversible modulation of astrocytic glycolysis and that glutamate plays a long-term effect and leaves a metabolic trace, these results support the view that astrocytes contribute to the lactate surge that accompanies synaptic activity and underscore the role of these cells in neurometabolic and neurovascular coupling.


Asunto(s)
Astrocitos/fisiología , Ácido Glutámico/farmacología , Glucólisis/fisiología , Potasio/farmacología , Animales , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Técnicas In Vitro , Indicadores y Reactivos , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estimulación Química
6.
Curr Res Physiol ; 5: 404-413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203817

RESUMEN

BK K+ channels are critical regulators of neuron and muscle excitability, comprised of a tetramer of pore-forming αsubunits from the KCNMA1 gene and cell- and tissue-selective ß subunits (KCNMB1-4). Mutations in KCNMA1 are associated with neurological disorders, including autism. However, little is known about the role of neuronal BK channel ß subunits in human neuropathology. The ß2 subunit is expressed in central neurons and imparts inactivation to BK channels, as well as altering activation and deactivation gating. In this study, we report the functional effect of G124R, a novel KCNMB2 mutation obtained from whole-exome sequencing of a patient diagnosed with autism spectrum disorder. Residue G124, located in the extracellular loop between TM1 and TM2, is conserved across species, and the G124R missense mutation is predicted deleterious with computational tools. To investigate the pathogenicity potential, BK channels were co-expressed with ß2WT and ß2G124R subunits in HEK293T cells. BK/ß2 currents were assessed from inside-out patches under physiological K+ conditions (140/6 mM K+ and 10 µM Ca2+) during activation and inactivation (voltage-dependence and kinetics). Using ß2 subunits lacking inactivation (ß2IR) revealed that currents from BK/ß2IRG124R channels activated 2-fold faster and deactivated 2-fold slower compared with currents from BK/ß2IRWT channels, with no change in the voltage-dependence of activation (V1/2). Despite the changes in the BK channel opening and closing, BK/ß2G124R inactivation rates (τinact and τrecovery), and the V1/2 of inactivation, were unaltered compared with BK/ß2WT channels under standard steady-state voltage protocols. Action potential-evoked current was also unchanged. Thus, the mutant phenotype suggests the ß2G124R TM1-TM2 extracellular loop could regulate BK channel activation and deactivation kinetics. However, additional evidence is needed to validate pathogenicity for this patient-associated variant in KCNMB2.

7.
Elife ; 112022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819138

RESUMEN

KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.


So far, only 70 patients around the world have been diagnosed with a newly identified rare syndrome known as KCNMA1-linked channelopathy. The condition is characterised by seizures and abnormal movements which include frequent 'drop attacks', a sudden and debilitating loss of muscle control that causes patients to fall without warning. The disease is associated with mutations in the gene for KCNMA1, a member of a class of proteins important for controlling nerve cell activity and brain function. However, due to the limited number of people affected by the condition, it is difficult to link a particular mutation to the observed symptoms; the basis for the drop attacks therefore remains unknown. Park et al. set out to 'model' KCNMA1-linked channelopathy in the laboratory, in order to determine which mutations in the KCNMA1 gene caused these symptoms. Three groups of mice were each genetically engineered to carry either one of the two most common mutations in the gene for KCNMA1, or a very rare mutation associated with the movement symptoms. Behavioural experiments and studies of nerve cell activity revealed that the mice carrying mutations that made the KCNMA1 protein more active developed seizures more easily and became immobilized, showing the mouse version of drop attacks. Giving these mice the drug dextroamphetamine, which works in some human patients, stopped the immobilizing attacks altogether. These results show for the first time which specific genetic changes cause the main symptoms of KCNMA1-linked channelopathy. Park et al. hope that this knowledge will deepen our understanding of this disease and help develop better treatments.


Asunto(s)
Canalopatías , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Animales , Canalopatías/genética , Corea , Modelos Animales de Enfermedad , Epilepsia Generalizada , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Ratones , Ratones Transgénicos , Convulsiones/genética
8.
Channels (Austin) ; 15(1): 447-464, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34224328

RESUMEN

KCNMA1-linked channelopathy is an emerging neurological disorder characterized by heterogeneous and overlapping combinations of movement disorder, seizure, developmental delay, and intellectual disability. KCNMA1 encodes the BK K+ channel, which contributes to both excitatory and inhibitory neuronal and muscle activity. Understanding the basis of the disorder is an important area of active investigation; however, the rare prevalence has hampered the development of large patient cohorts necessary to establish genotype-phenotype correlations. In this review, we summarize 37 KCNMA1 alleles from 69 patients currently defining the channelopathy and assess key diagnostic and clinical hallmarks. At present, 3 variants are classified as gain-of-function with respect to BK channel activity, 14 loss-of-function, 15 variants of uncertain significance, and putative benign/VUS. Symptoms associated with these variants were curated from patient-provided information and prior publications to define the spectrum of clinical phenotypes. In this newly expanded cohort, seizures showed no differential distribution between patients harboring GOF and LOF variants, while movement disorders segregated by mutation type. Paroxysmal non-kinesigenic dyskinesia was predominantly observed among patients with GOF alleles of the BK channel, although not exclusively so, while additional movement disorders were observed in patients with LOF variants. Neurodevelopmental and structural brain abnormalities were prevalent in patients with LOF mutations. In contrast to mutations, disease-associated KCNMA1 single nucleotide polymorphisms were not predominantly related to neurological phenotypes but covered a wider set of peripheral physiological functions. Together, this review provides additional evidence exploring the genetic and biochemical basis for KCNMA1-linked channelopathy and summarizes the clinical repository of patient symptoms across multiple types of KCNMA1 gene variants.


Asunto(s)
Canalopatías , Adolescente , Preescolar , Distonía , Humanos , Lactante
9.
J Neurochem ; 109 Suppl 1: 94-100, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19393014

RESUMEN

In recent years, the use of fluorescent glucose analogs has allowed the study of rapid transport modulation in heterogeneous cell cultures and complex tissues. However, the kinetic behavior of these tracers is not conventional. For instance, the fluorescent glucose analog 6-NBDG permeates the cell 50-100 times slower than glucose but the uptake of 6-NBDG is almost insensitive to glucose, an observation that casts doubts as to the specificity of the uptake pathway. To investigate this apparent anomaly in cultured astrocytes, which are rich in the glucose transporter GLUT1, we first estimated the kinetic parameters of 6-NBDG uptake, which were then incorporated into the kinetic model of GLUT1. The main outcome of the analysis was that 6-NBDG binds to GLUT1 with 300 times higher affinity than glucose, which explains why its uptake is not efficiently displaced by glucose. The high binding affinity of 6-NBDG also explains why cytochalasin B is less effective at inhibiting 6-NBDG uptake than at inhibiting glucose uptake. We conclude that 6-NBDG, used at low concentrations, permeates into astrocytes chiefly through GLUT1, and advise that the exofacial GLUT1 inhibitor 4,6-ethylidine-D-glucose be used, instead of glucose, as the tool of choice to confirm the specificity of 6-NBDG uptake.


Asunto(s)
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Astrocitos/metabolismo , Glucosamina/análogos & derivados , Transportador de Glucosa de Tipo 1/metabolismo , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Citocalasina B/farmacología , Difusión , Glucosa/metabolismo , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Modelos Estadísticos , Reproducibilidad de los Resultados , Especificidad por Sustrato
10.
Elife ; 82019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31271355

RESUMEN

In silico and in vitro studies have made progress in understanding protein-protein complex formation; however, the molecular mechanisms for their dissociation are unclear. Protein-protein complexes, lasting from microseconds to years, often involve induced-fit, challenging computational or kinetic analysis. Charybdotoxin (CTX), a peptide from the Leiurus scorpion venom, blocks voltage-gated K+-channels in a unique example of binding/unbinding simplicity. CTX plugs the external mouth of K+-channels pore, stopping K+-ion conduction, without inducing conformational changes. Conflicting with a tight binding, we show that external permeant ions enhance CTX-dissociation, implying a path connecting the pore, in the toxin-bound channel, with the external solution. This sensitivity is explained if CTX wobbles between several bound conformations, producing transient events that restore the electrical and ionic trans-pore gradients. Wobbling may originate from a network of contacts in the interaction interface that are in dynamic stochastic equilibria. These partially-bound intermediates could lead to distinct, and potentially manipulable, dissociation pathways.


Asunto(s)
Caribdotoxina/metabolismo , Iones/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Animales , Arácnidos/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Unión Proteica , Conformación Proteica
11.
J Gen Physiol ; 151(10): 1173-1189, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31427379

RESUMEN

KCNMA1 encodes the pore-forming α subunit of the "Big K+" (BK) large conductance calcium and voltage-activated K+ channel. BK channels are widely distributed across tissues, including both excitable and nonexcitable cells. Expression levels are highest in brain and muscle, where BK channels are critical regulators of neuronal excitability and muscle contractility. A global deletion in mouse (KCNMA1-/- ) is viable but exhibits pathophysiology in many organ systems. Yet despite the important roles in animal models, the consequences of dysfunctional BK channels in humans are not well characterized. Here, we summarize 16 rare KCNMA1 mutations identified in 37 patients dating back to 2005, with an array of clinically defined pathological phenotypes collectively referred to as "KCNMA1-linked channelopathy." These mutations encompass gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity, as well as several variants of unknown significance (VUS). Human KCNMA1 mutations are primarily associated with neurological conditions, including seizures, movement disorders, developmental delay, and intellectual disability. Due to the recent identification of additional patients, the spectrum of symptoms associated with KCNMA1 mutations has expanded but remains primarily defined by brain and muscle dysfunction. Emerging evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with semi-distinct patient symptoms, such as paroxysmal nonkinesigenic dyskinesia (PNKD) with GOF and ataxia with LOF. However, due to the de novo origins for the majority of KCNMA1 mutations identified to date and the phenotypic variability exhibited by patients, additional evidence is required to establish causality in most cases. The symptomatic picture developing from patients with KCNMA1-linked channelopathy highlights the importance of better understanding the roles BK channels play in regulating cell excitability. Establishing causality between KCNMA1-linked BK channel dysfunction and specific patient symptoms may reveal new treatment approaches with the potential to increase therapeutic efficacy over current standard regimens.


Asunto(s)
Canalopatías/genética , Predisposición Genética a la Enfermedad , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Regulación de la Expresión Génica , Humanos , Mutación
13.
J Gen Physiol ; 148(4): 277-91, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27619418

RESUMEN

Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K(+) channels discriminate K(+) over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K(+) channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K(+) channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K(+) channels, accounting for their diversity in unitary conductance.


Asunto(s)
Canales de Potasio/química , Canales de Potasio/metabolismo , Potasio/metabolismo , Transporte Iónico/fisiología , Modelos Moleculares , Conformación Proteica
14.
Sci Rep ; 6: 19893, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26831782

RESUMEN

Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.

15.
Temperature (Austin) ; 2(2): 188-200, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27227023

RESUMEN

Mammals maintain homeostatic control of their body temperature. Therefore, these organisms are expected to have adaptations that confer the ability to detect and react to both self and ambient temperature. Temperature-activated ion channels have been discovered to be the primary molecular determinants of thermosensation. The most representative group of these determinants constitutes members of the transient receptor potential superfamily, TRP, which are activated by either low or high temperatures covering the whole range of physiologically relevant temperatures. This review makes a critical assessment of existing analytical methods of temperature-activated TRP channel mechanisms using the cold-activated TRPM8 channel as a paradigm.

16.
PLoS One ; 9(9): e106776, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25181545

RESUMEN

The transient receptor potential ion channel TRPA1 confers the ability to detect tissue damaging chemicals to sensory neurons and as a result mediates chemical nociception in vivo. Mouse TRPA1 is activated by electrophilic compounds such as mustard-oil and several physical stimuli such as cold temperature. Due to its sensory function inhibition of TRPA1 activity might provide an effective treatment against chronic and inflammatory pain. Therefore, TRPA1 has become a target for the development of analgesic drugs. 6-Methyl-5-(2-(trifluoromethyl)phenyl)-1H-indazole (Compound 31) has been identified by a chemical screen and lead optimization as an inhibitor of chemical activation of TRPA1. However, the structures or domains of TRPA1 that mediate the inhibitory effect of Compound 31 are unknown. Here, we screened 12,000 random mutant clones of mouse TRPA1 for their sensitivity to mustard-oil and the ability of Compound 31 to inhibit chemical activation by mustard-oil. In addition, we separately screened this mutant library while stimulating it with cold temperatures. We found that the single-point mutation I624N in the N-terminus of TRPA1 specifically affects the sensitivity to mustard-oil, but not to cold temperatures. This is evidence that sensitivity of TRPA1 to chemicals and cold temperatures is conveyed by separable mechanisms. We also identified five mutations located within the pore domain that cause loss of inhibition by Compound 31. This result demonstrates that the pore-domain is a regulator of chemical activation and suggests that Compound 31 might be acting directly on the pore-domain.


Asunto(s)
Analgésicos/farmacología , Indazoles/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/química , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Planta de la Mostaza , Aceites de Plantas/farmacología , Mutación Puntual , Porosidad , Estructura Terciaria de Proteína , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética
17.
Neuron ; 82(5): 1017-31, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24814535

RESUMEN

Several transient receptor potential (TRP) ion channels are activated with high sensitivity by either cold or hot temperatures. However, structures and mechanism that determine temperature directionality (cold versus heat) are not established. Here we screened 12,000 random mutant clones of the cold-activated mouse TRPA1 ion channel with a heat stimulus. We identified three single-point mutations that are individually sufficient to make mouse TRPA1 warm activated, while leaving sensitivity to chemicals unaffected. Mutant channels have high temperature sensitivity of voltage activation, specifically of channel opening, but not channel closing, which is reminiscent of other heat-activated TRP channels. All mutations are located in ankyrin repeat six, which identifies this domain as a sensitive modulator of thermal activation. We propose that a change in the coupling of temperature sensing to channel gating generates this sensitivity to warm temperatures. Our results demonstrate that minimal changes in protein sequence are sufficient to generate a wide diversity of thermal sensitivities in TRPA1.


Asunto(s)
Repetición de Anquirina/genética , Mutación Puntual , Temperatura , Canales de Potencial de Receptor Transitorio/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Drosophila , Ratones , Datos de Secuencia Molecular , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA