Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 284(8): 4936-43, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19054771

RESUMEN

Cadmium poses a significant threat to human health due to its toxicity. In mammals and in bakers' yeast, cadmium is detoxified by ATP-binding cassette transporters after conjugation to glutathione. In fission yeast, phytochelatins constitute the co-substrate with cadmium for the transporter SpHMT1. In plants, a detoxification mechanism similar to the one in fission yeast is supposed, but the molecular nature of the transporter is still lacking. To investigate further the relationship between SpHMT1 and its co-substrate, we overexpressed the transporter in a Schizosaccharomyces pombe strain deleted for the phytochelatin synthase gene and heterologously in Saccharomyces cerevisiae and in Escherichia coli. In all organisms, overexpression of SpHMT1 conferred a markedly enhanced tolerance to cadmium but not to Sb(III), AgNO(3), As(III), As(V), CuSO(4), or HgCl(2). Abolishment of the catalytic activity by expression of SpHMT1(K623M) mutant suppressed the cadmium tolerance phenotype independently of the presence of phytochelatins. Depletion of the glutathione pool inhibited the SpHMT1 activity but not that of AtHMA4, a P-type ATPase, indicating that GSH is necessary for the SpHMT1-mediated cadmium resistance. In E. coli, SpHMT1 was targeted to the periplasmic membrane and led to an increased amount of cadmium in the periplasm. These results demonstrate that SpHMT1 confers cadmium tolerance in the absence of phytochelatins but depending on the presence of GSH and ATP. Our results challenge the dogma of the two separate cadmium detoxification pathways and demonstrate that a common highly conserved mechanism has been selected during the evolution from bacteria to humans.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cadmio/farmacología , Farmacorresistencia Fúngica/fisiología , Glutatión/metabolismo , Fitoquelatinas , Schizosaccharomyces/metabolismo , Transportadoras de Casetes de Unión a ATP , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/genética , Sustitución de Aminoácidos , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quelantes , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Glutatión/genética , Humanos , Mutación Missense , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
2.
Appl Microbiol Biotechnol ; 72(1): 88-93, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16333620

RESUMEN

A new tool to provide an environmentally friendly way to deliver active proteins to the environment has been developed, based on the use of polyhydroxyalkanoate (PHA, bioplastic) granules. To illustrate this novel approach, a derived Cry1Ab insect-specific toxin protein was in vivo immobilized into PHA granules through the polypeptide tag BioF. The new toxin, named Fk-Bt1, was shown to be active against Sesamia nonagrioides (Lepidoptera: Noctuidae). The dose-mortality responses of the new toxin granule formulation (PFk-Bt1) and purified Cry1Ab have been compared, demonstrating the effectiveness of PFk-Bt1 and suggesting a common mode of action.


Asunto(s)
Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Insecticidas/farmacología , Control Biológico de Vectores/métodos , Polímeros , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Gránulos Citoplasmáticos/química , Endotoxinas/química , Proteínas Hemolisinas/química , Insecticidas/química , Lepidópteros/efectos de los fármacos , Unión Proteica , Proteínas Recombinantes de Fusión/biosíntesis
3.
Appl Environ Microbiol ; 70(8): 4642-7, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15294797

RESUMEN

The thermophilic inorganic pyrophosphatase (Pyr) from Thermus thermophilus has been produced in Escherichia coli fused to the C terminus of the choline-binding tag (ChB tag) derived from the choline-binding domain (ChBD) of pneumococcal LytA autolysin. The chimeric ChBD-Pyr protein retains its thermostable activity and can be purified in a single step by DEAE-cellulose affinity chromatography. Pyr can be further released from the ChBD by thrombin, using the specific protease recognition site incorporated in the C terminus of this tag. Remarkably, the ChB tag provides a selective and very strong thermostable noncovalent immobilization of ChBD-Pyr in the DEAE-cellulose matrix. The binding of choline or choline analogues, such as DEAE, confers a high thermal stability to this tag; therefore, the immobilized chimeric enzyme can be assayed at high temperature without protein leakage, demonstrating the usefulness of the ChB tag for noncovalent immobilization of thermophilic proteins. Moreover, ChBD-Pyr can be purified and immobilized in a single step on commercial DEAE-cellulose paper. The affinity of the ChB tag for this versatile solid support can be very helpful in developing many biotechnological applications.


Asunto(s)
Colina/metabolismo , Enzimas Inmovilizadas , Pirofosfatasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Thermus/enzimología , Secuencia de Bases , Biotecnología/métodos , Estabilidad de Enzimas , Escherichia coli/enzimología , Escherichia coli/genética , Calor , Datos de Secuencia Molecular , N-Acetil Muramoil-L-Alanina Amidasa/química , Pirofosfatasas/genética , Pirofosfatasas/aislamiento & purificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
4.
Appl Environ Microbiol ; 70(6): 3205-12, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15184113

RESUMEN

A new protein immobilization and purification system has been developed based on the use of polyhydroxyalkanoates (PHAs, or bioplastics), which are biodegradable polymers accumulated as reserve granules in the cytoplasm of certain bacteria. The N-terminal domain of the PhaF phasin (a PHA-granule-associated protein) from Pseudomonas putida GPo1 was used as a polypeptide tag (BioF) to anchor fusion proteins to PHAs. This tag provides a novel way to immobilize proteins in vivo by using bioplastics as supports. The granules carrying the BioF fusion proteins can be isolated by a simple centrifugation step and used directly for some applications. Moreover, when required, a practically pure preparation of the soluble BioF fusion protein can be obtained by a mild detergent treatment of the granule. The efficiency of this system has been demonstrated by constructing two BioF fusion products, including a functional BioF-beta-galactosidase. This is the first example of an active bioplastic consisting of a biodegradable matrix carrying an active enzyme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biotecnología/métodos , Proteínas Portadoras/metabolismo , Enzimas Inmovilizadas/metabolismo , Polímeros/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas Recombinantes de Fusión/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA