Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2316969121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346197

RESUMEN

SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.


Asunto(s)
Condrocitos , Estudio de Asociación del Genoma Completo , Ratones , Humanos , Animales , Condrocitos/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular , Proliferación Celular , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
2.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38364990

RESUMEN

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Hipofosfatemia , Humanos , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/diagnóstico , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Hipercalciuria/diagnóstico , Hipercalciuria/tratamiento farmacológico , Hipercalciuria/genética , Riñón/metabolismo , Fosfatos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismo
3.
Am J Med Genet A ; 194(3): e63457, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37881147

RESUMEN

Recurrent 1q21.1 copy number variants (CNVs) have been associated with a wide spectrum of clinical features, ranging from normal phenotype to moderate intellectual disability, with congenital anomalies and dysmorphic features. They are often inherited from unaffected parents and the pathogenicity is difficult to assess. We describe the phenotypic and genotypic data for 34 probands carrying CNVs in the 1q21.1 chromosome region (24 duplications, 8 deletions and 2 triplications). We also reviewed 89 duplications, 114 deletions and 5 triplications described in the literature, at variable 1q21.1 locations. We aimed to identify the most highly associated clinical features to determine the phenotypic expression in affected individuals. Developmental delay or learning disabilities and neuropsychiatric disorders were common in patients with deletions, duplications and triplications of 1q21.1. Mild dysmorphic features common in these CNVs include a prominent forehead, widely spaced eyes and a broad nose. The CNVs were mostly inherited from apparently unaffected parents. Almost half of the CNVs were distal, overlapping with a common minimal region of 1.2 Mb. We delineated the clinical implications of 1q21.1 CNVs and confirmed that these CNVs are likely pathogenic, although subject to incomplete penetrance and variable expressivity. Long-term follow-up should be performed to each newly diagnosed case, and prenatal genetic counseling cautiously discussed, as it remains difficult to predict the phenotype in the event of an antenatal diagnosis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Discapacidad Intelectual , Humanos , Femenino , Embarazo , Variaciones en el Número de Copia de ADN/genética , Fenotipo , Genotipo , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Diagnóstico Prenatal
4.
Am J Med Genet A ; 194(7): e63531, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38421086

RESUMEN

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 3 , Variaciones en el Número de Copia de ADN , Fenotipo , Humanos , Femenino , Masculino , Cromosomas Humanos Par 3/genética , Duplicación Cromosómica/genética , Niño , Variaciones en el Número de Copia de ADN/genética , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Adolescente , Estudios de Cohortes , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Adulto , Lactante
5.
J Med Genet ; 61(1): 36-46, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37586840

RESUMEN

PURPOSE: Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS: From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS: MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION: MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.


Asunto(s)
Discapacidad Intelectual , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Estudios Retrospectivos , Fenotipo , Secuenciación del Exoma , Enfermedades Raras/genética
6.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35232796

RESUMEN

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Micrognatismo/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Síndrome , Fenotipo , ADN , Factores de Transcripción SOXC/genética
7.
Hum Mutat ; 43(3): 347-361, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35005812

RESUMEN

We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.


Asunto(s)
Enfermedades Renales , Riñón Poliquístico Autosómico Dominante , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Femenino , Feto/anomalías , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Riñón/anomalías , Enfermedades Renales/congénito , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Masculino , Mutación , Riñón Poliquístico Autosómico Dominante/genética
8.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639323

RESUMEN

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/genética , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/mortalidad , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/mortalidad , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Edad Gestacional , Humanos , Recién Nacido , Enfermedades del Recién Nacido/metabolismo , Enfermedades del Recién Nacido/patología , Pulmón/embriología , Pulmón/crecimiento & desarrollo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Masculino , Herencia Materna , Organogénesis , Herencia Paterna , Linaje , Polimorfismo de Nucleótido Simple/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box/metabolismo
9.
Clin Genet ; 98(3): 261-273, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32621347

RESUMEN

Megacystis-microcolon-intestinal-hypoperistalsis syndrome (MMIHS) is a severe congenital visceral myopathy characterized by an abdominal distension due to a large non-obstructed urinary bladder, a microcolon and intestinal hypo- or aperistalsis. Most of the patients described to date carry a sporadic heterozygous variant in ACTG2. More recently, recessive forms have been reported and mutations in MYH11, LMOD1, MYLK and MYL9 have been described at the molecular level. In the present report, we describe five patients carrying a recurrent heterozygous variant in ACTG2. Exome sequencing performed in four families allowed us to identify the genetic cause in three. In two families, we identified variants in MMIHS causal genes, respectively a nonsense homozygous variant in MYH11 and a previously described homozygous deletion in MYL9. Finally, we identified compound heterozygous variants in a novel candidate gene, PDCL3, c.[143_144del];[380G>A], p.[(Tyr48Ter)];[(Cys127Tyr)]. After cDNA analysis, a complete absence of PDLC3 expression was observed in affected individuals, indicating that both mutated transcripts were unstable and prone to mediated mRNA decay. PDCL3 encodes a protein involved in the folding of actin, a key step in thin filament formation. Presumably, loss-of-function of this protein affects the contractility of smooth muscle tissues, making PDCL3 an excellent candidate gene for autosomal recessive forms of MMIHS.


Asunto(s)
Anomalías Múltiples/genética , Proteínas Portadoras/genética , Colon/anomalías , Predisposición Genética a la Enfermedad , Seudoobstrucción Intestinal/genética , Proteínas del Tejido Nervioso/genética , Vejiga Urinaria/anomalías , Anomalías Múltiples/patología , Feto Abortado , Actinas/genética , Colon/patología , Femenino , Homocigoto , Humanos , Recién Nacido , Seudoobstrucción Intestinal/patología , Masculino , Mutación/genética , Cadenas Pesadas de Miosina/genética , Cadenas Ligeras de Miosina/genética , Linaje , Vejiga Urinaria/patología , Secuenciación del Exoma
10.
Calcif Tissue Int ; 107(2): 191-194, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32430692

RESUMEN

Vitamin D-dependent rickets type 1B (VDDR1B) is an autosomal semidominant genetic disorder caused by a deficiency in CYP2R1, which encodes vitamin D 25-hydroxylase, an enzyme that plays a crucial role in the conversion of vitamin D to 25-dihydroxyvitamin D3. VDDR1B is a severe form of rickets that occurs during infancy and which is responsive to 25-OH vitamin D supplementation. We studied three adult patients from a multi-consanguineous family with VDDR1B. They have been diagnosed with pseudo-nutritional rickets and treated during their adolescence with 25-OH vitamin D. These patients stopped their treatments at the end of adolescence and were contacted 14 to 17 years later when VDDR1B diagnosis was carried out in their niece and nephews. These three patients had undetectable 25-OH vitamin D, but normal levels of plasma 1-25(OH)2 vitamin D. All patients had a hip bone mineral density and a normal vertebral despite osteoarthritis degenerative lesions which may impact BMD evaluation. These findings show that vitamin D supplementation has a questionable effect, if any, for osteoporosis prevention in adulthood in contrast to its crucial importance during infancy and adolescence.


Asunto(s)
Densidad Ósea , Colestanotriol 26-Monooxigenasa/deficiencia , Raquitismo Hipofosfatémico Familiar/complicaciones , Adolescente , Adulto , Consanguinidad , Familia 2 del Citocromo P450 , Humanos , Vitamina D/sangre
12.
Am J Kidney Dis ; 73(6): 886-889, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30765103

RESUMEN

Mutations in the SLC34A3 gene, encoding the sodium/phosphate cotransporter 2C (NPTIIc), induce decreased renal phosphate reabsorption, hypophosphatemia, decreased fibroblast growth factor 23 and parathyroid hormone, and increased 1,25-dihydroxyvitamin D (1,25[OH]2D) levels. The complete phenotype is characterized by hypophosphatemia, hypercalciuria, and nephrolithiasis/nephrocalcinosis, leading to chronic kidney disease and osteoporosis in adults. We report a 15-year-old boy referred for nephrocalcinosis. The patient demonstrated hypercalcemia, hypercalciuria, normal serum phosphate level, normal tubular phosphate reabsorption, and increased serum 1,25(OH)2D level with suppressed serum parathyroid hormone. Compound heterozygous mutations in SLC34A3 were found. Hydrochlorothiazide failed to decrease calciuria. Fluconazole, an inhibitor of 1α-hydroxylase, was effective in normalizing calciuria without decreasing glomerular filtration rate. We conclude that children with SLC334A3 mutations can present with a less-typical phenotype, having normal serum phosphate levels and normal renal phosphate reabsorption. Genetic abnormalities of NPTIIc should be considered in cases of increased 1,25(OH)2D levels without mutations in CYP24A1. The utility of fluconazole to decrease 1,25(OH)2D levels requires confirmation in larger studies.


Asunto(s)
Fluconazol/uso terapéutico , Predisposición Genética a la Enfermedad , Nefrocalcinosis/tratamiento farmacológico , Nefrocalcinosis/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Adolescente , Estudios de Seguimiento , Humanos , Masculino , Mutación , Nefrocalcinosis/diagnóstico , Linaje , Medición de Riesgo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Vitamina D3 24-Hidroxilasa/genética
13.
Pediatr Nephrol ; 33(10): 1723-1729, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29959532

RESUMEN

BACKGROUND: Prenatal diagnosis of hyperechogenic kidneys is associated with a wide range of etiologies and prognoses. The recent advances in fetal ultrasound associated with the development of next-generation sequencing for molecular analysis have enlarged the spectrum of etiologies, making antenatal diagnosis a very challenging discipline. Of the various known causes of hyperechogenic fetal kidneys, calcium and phosphate metabolism disorders represent a rare cause. An accurate diagnosis is crucial for providing appropriate genetic counseling and medical follow-up after birth. METHODS: We report on three cases of fetal hyperechogenic kidneys corresponding to postnatal diagnosis of nephrocalcinosis. In all cases, antenatal ultrasound showed hyperechogenic kidneys of normal to large size from 22 gestational weeks, with a normal amount of amniotic fluid. Postnatal ultrasound follow-up showed nephrocalcinosis associated with hypercalcemia, hypercalciuria, elevated 1,25(OH)2-vitamin D, and suppressed parathyroid hormone levels. RESULTS: Molecular genetic analysis by next-generation sequencing performed after birth in the three newborns revealed biallelic pathogenic variants in the SLC34A1 gene, encoding the sodium/phosphate cotransporter type 2 (Npt2a), confirming the diagnosis of infantile hypercalcemia. CONCLUSIONS: Nephrocalcinosis due to infantile hypercalcemia can be a cause of fetal hyperechogenic kidneys, which suggests early antenatal anomaly of calcium and phosphate metabolism. This entity should be considered in differential diagnosis. Postnatal follow-up of infants with hyperechogenic kidneys should include evaluation of calcium and phosphate metabolism.


Asunto(s)
Hipercalcemia/diagnóstico , Riñón/diagnóstico por imagen , Nefrocalcinosis/diagnóstico , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Ultrasonografía Prenatal , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Hipercalcemia/genética , Hipercalcemia/patología , Lactante , Recién Nacido , Riñón/patología , Masculino , Mutación , Nefrocalcinosis/genética , Nefrocalcinosis/patología , Embarazo
14.
Am J Med Genet A ; 167(6): 1386-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25899668

RESUMEN

Loss-of-function mutations of RUNX2 are responsible for cleidocranial dysplasia, an autosomal dominant disorder characterized by delayed closure of cranial sutures, aplastic or hypoplastic clavicles, moderate short stature and supernumerary teeth. By contrast, an increased gene dosage is expected for duplication of the entire RUNX2 sequence and thus, a phenotype different from cleidocranial dysplasia. To date, two cousins with a duplication including the entire RUNX2 sequence in addition to MIR586, CLIC5 and the 5' half of SUPT3H have been reported. These patients presented with metopic synostosis and hypodontia. Here, we report on a family with an affected mother and three affected children. The four patients carried a 285 kb duplication identified by array comparative genomic hybridization. The duplication includes the entire sequence of RUNX2 and the 5' half of SUPT3H. We confirmed the duplication by real-time quantitative PCR in the four patients. Two children presented with the association of metopic craniosynostosis and oligo/hypodontia previously described, confirming the phenotype caused by RUNX2 duplication. Interestingly, the mother and one child had isolated hypodontia without craniosynostosis, broadening the phenotype observed in patients with such duplications.


Asunto(s)
Anodoncia/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Craneosinostosis/genética , Duplicación de Gen , Factores de Transcripción/genética , Adolescente , Adulto , Anodoncia/diagnóstico , Anodoncia/patología , Niño , Hibridación Genómica Comparativa , Craneosinostosis/diagnóstico , Craneosinostosis/patología , Femenino , Dosificación de Gen , Expresión Génica , Humanos , Masculino , Linaje , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Arch Pediatr ; 31(4S1): 4S13-4S20, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39343468

RESUMEN

In humans, physiological bone and tooth mineralization is a complex cell-mediated process. Prerequisites for proper mineralization include sufficient amounts of minerals (calcium and phosphate [Pi]) to initiate the formation and the growth of apatite crystals and adequate amounts of mineralization inhibitors, such as pyrophosphate (PPi), to prevent uncontrolled extraskeletal mineralization. In this review, we provide an overview of the genetics of human disorders of mineralization, focusing on Pi and PPi metabolism and transport diseases, as the Pi/PPi ratio is an important determinant of crystal production in vivo. Variants in genes implicated in the homeostasis of this ratio may lead to a systemic or local increased Pi/PPi ratio, either by increasing the Pi concentration or by decreasing the PPi concentration, resulting in ectopic calcifications; conversely, variants may lead to a decreased Pi/PPi ratio, resulting in defective mineralization. Owing to the implication of common pathways and, occasionally, to some extent of clinical overlap, an accurate diagnosis and understanding of the pathophysiology of these disorders may be challenging. However, precise molecular characterization of these conditions not only facilitates their diagnosis, but also helps to gather evidence regarding the pathophysiology and phenotype-genotype correlation to improve medical care and develop innovative therapeutics.


Asunto(s)
Difosfatos , Fosfatos , Humanos , Difosfatos/metabolismo , Fosfatos/metabolismo
16.
J Clin Endocrinol Metab ; 109(2): e488-e494, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37843399

RESUMEN

CONTEXT: X-linked hypophosphatemia (XLH) is a rare genetic disorder that results in increased plasma levels of fibroblast growth factor 23 (FGF23). Several studies have demonstrated a direct association between FGF23 and cardiovascular mortality in cohorts of patients with chronic renal failure. However, in patients with XLH, studies on the cardiovascular impact of the disease are rare, with contradictory results. OBJECTIVE: The aim was to assess whether the disease led to an increased cardiovascular risk. METHODS: We conducted a single-center retrospective observational study on a local cohort of adult patients with XLH. The primary endpoint was a composite endpoint of the frequency of left ventricular hypertrophy (LVH) or presence of high blood pressure. Our secondary objectives were to assess echocardiographic, pulse wave velocity, and central blood pressure data as other markers of CV health. Independently of this cohort, tissue sodium content with magnetic resonance imaging was studied in 2 patients with XLH before and after burosumab. RESULTS: Twenty-two patients were included. Median serum phosphate was 0.57 (0.47-0.72) mmol/L and FGF23 94 pg/L (58-2226). Median blood pressure was 124 (115-130)/68 (65-80) mm Hg, with only 9% of patients being hypertensive. A majority of patients (69%) had no LVH, only 1 had a left ventricular mass >100 g/m² and 25% of patients had left ventricular remodeling. Pulse wave velocity was normal in all patients. No differences in skin and muscle sodium content were observed before and after burosumab in the 2 patients who underwent sodium magnetic resonance imaging. CONCLUSION: We found no elevated risk of developing hypertension or LVH in patients with XLH.


Asunto(s)
Enfermedades Cardiovasculares , Raquitismo Hipofosfatémico Familiar , Hipertensión , Hipofosfatemia , Adulto , Humanos , Raquitismo Hipofosfatémico Familiar/complicaciones , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Análisis de la Onda del Pulso , Factores de Riesgo , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/epidemiología , Hipertrofia Ventricular Izquierda/etiología , Hipertensión/complicaciones , Hipertensión/epidemiología , Factores de Riesgo de Enfermedad Cardiaca , Sodio , Factores de Crecimiento de Fibroblastos , Fosfatos
17.
J Clin Endocrinol Metab ; 108(4): 812-826, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36321535

RESUMEN

INTRODUCTION: Vitamin D-dependent rickets type 1A (VDDR1A) is a rare genetic disease associated with loss-of-function variations in the gene encoding the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1). Phenotype-genotype correlation is unclear. Long-term outcome data are lacking. The objective of this study was to describe characteristics and outcomes to search for a phenotype-genotype correlation. METHODS: We retrospectively collected clinical data, genetic features, and outcomes from 24 genetically confirmed cases from 10 French centers; results are presented as median (min-max). RESULTS: Clinical symptoms at diagnosis (age, 1.5 [0.5-8.7] years) were mainly bone and neurological abnormalities, and laboratory data showed hypocalcemia (1.97 [1.40-2.40] mmol/L), hypophosphatemia (-3.4 [-13.4 to (-)0.2] SD score for age), low 25OHD and low 1,25(OH)2D3, secondary hyperparathyroidism with PTH at 6.6 (1.3-13.7) times the upper limit for normal (ULN; PTH expressed as ULN to homogenize data presentation), and increased alkaline phosphatase (1968 [521-7000] IU/L). Bone radiographs were abnormal in 83% of patients. We identified 17 variations (11 missense, 3 frameshift, 2 truncating, and 1 acceptor splice site variations) in 19 families (homozygous state in 58% [11/19]). The partial loss-of-function variation p.(Ala129Thr) was associated with a milder phenotype: older age at diagnosis, higher serum calcium (2.26 vs 1.85 mmol/L), lower PTH (4.7 vs 7.5 ULN), and lower alkaline phosphatase (759 vs 2082 IU/L). Patients were treated with alfacalcidol. Clinical (skeletal, neurological), biochemical, and radiological outcomes were satisfactory, and complications occurred if there was bad adherence. CONCLUSION: Overall, our findings highlight good outcomes under substitutive treatment and the need of a closer follow-up of eyes, teeth, kidneys, and blood pressure in VDDR1A.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Raquitismo , Humanos , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/uso terapéutico , Estudios Retrospectivos , Raquitismo/genética , Raquitismo Hipofosfatémico Familiar/diagnóstico , Vitamina D/uso terapéutico , Fenotipo , Genotipo
18.
Trials ; 23(1): 499, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710560

RESUMEN

BACKGROUND: Hypercalciuria is one of the most frequent metabolic disorders associated with nephrolithiasis and/or nephrocalcinosis possibly leading to chronic kidney disease (CKD) and bone complications in adults. Orphan diseases with different underlying primary pathophysiology share inappropriately increased 1,25(OH)2D levels and hypercalciuria, e.g., hypersensitivity to vitamin D and renal phosphate wasting. Their management is challenging, typically based on hyperhydration and dietary advice. The antifungal azoles are known to inhibit the 1α-hydroxylase and therefore decrease 1,25(OH)2D levels; they are commonly used, with well described pharmacokinetic and tolerability data. Fluconazole has been successfully reported to reduce calciuria in patients with CYP24A1 or SLC34A3 mutations, with no safety warnings. Thus, based on these case reports, we hypothesize that fluconazole is effective to decrease and normalize calciuria in patients with hypercalciuria and increased 1,25(OH)2D levels. METHODS: The FLUCOLITH trial is a prospective, interventional, randomized in parallel groups (1:1), placebo-controlled, double-blind trial. A total of 60 patients (10-60 years) with nephrolithiasis and/or nephrocalcinosis history, hypercalciuria (> 0.1 mmol/kg/day), increased 1,25(OH)2D levels (> 150 pmol/L), and 25-OH-D levels >20 nmol/L will be included. Inclusions will be performed only from mid-September to the beginning of February to avoid bias due to sunlight-induced vitamin D synthesis. The primary endpoint will be the proportion of patients with normalization of 24-h calciuria between baseline and 16 weeks, or with a relative decrease of at least 30% of 24-h calciuria in patients who still display at W16 a 24-h hypercalciuria. DISCUSSION: The current challenge is to propose an efficient treatment to patients with hypercalciuria and increased 1,25(OH)2D levels in order to prevent later complications and notably CKD that can ultimately lead to end-stage renal disease. Based on improvement of knowledge in phosphate/calcium metabolism, pathophysiology and genetics, the "off-label" use of fluconazole was recently reported to be useful in hypercalciuric patients with increased 1,25(OH)2D levels. Thus, the FLUCOLITH study is a unique opportunity to develop a new indication of a well-known and not expensive drug in orphan renal diseases, the ultimate objective being the secondary prevention of CKD worsening in these patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04495608 . Registered on July 23, 2020.


Asunto(s)
Nefrocalcinosis , Nefrolitiasis , Insuficiencia Renal Crónica , Adulto , Fluconazol/efectos adversos , Humanos , Hipercalciuria/diagnóstico , Hipercalciuria/tratamiento farmacológico , Hipercalciuria/etiología , Fosfatos , Estudios Prospectivos , Insuficiencia Renal Crónica/complicaciones , Vitamina D/metabolismo
19.
Bone Rep ; 14: 101073, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33997150

RESUMEN

INTRODUCTION: Pseudohypoparathyroidism type 1A (PHP1A) and pseudopseudohypoparathyroidism (PPHP) (Inactivating PTH/PTHrP Signaling Disorders type 2, IPPSD2) are two rare autosomal disorders caused by loss-of-function mutations on either maternal or paternal allele, respectively, in the imprinted GNAS gene, which encodes the α subunit of the ubiquitously-expressed stimulatory G protein (Gαs). CASE PRESENTATION: We investigated a synonymous GNAS variant NM_001077488.2: c.108C>A / p.(Val36=) identified in a family presenting with IPPSD2 phenotype. In silico splicing prediction algorithms were in favor of a deleterious effect of this variant, by creating a new donor splicing site. The GNAS expression studies in blood suggested haploinsufficiency and showed an alternate splice product demonstrating the unmasking of a cryptic site, leading to a 34 base pairs deletion and the creation of a probable unstable RNA.We present the first familial case of IPPSD2 caused by a pathogenic synonymous variant in GNAS gene.

20.
Front Pediatr ; 9: 764040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820344

RESUMEN

Introduction: The use of teriparatide has been reported in children with hypoparathyroidism as an investigational physiologic replacement therapy. Methods: We aimed to retrospectively report our pediatric experience of bi-daily sub-cutaneous teriparatide. Results are presented as median (25th-75th quartile). As part of the routine follow-up of these patients with hypoparathyroidism, total calcium at H0 (i.e., just before injection) and H4 (i.e., 4 h after teriparatide injection) and other biomarker parameters were regularly assessed. Results: At a median age of 10.7 (8.1-12.6) years, an estimated glomerular filtration rate (eGFR) of 110 (95-118) mL/min/1.73 m2, calcium levels of 1.87 (1.81-1.96) mmol/L and an age-standardized phosphate of 3.8 (2.5-4.9) SDS, teriparatide therapy was introduced in 10 patients at the dose of 1.1 (0.7-1.5) µg/kg/day (20 µg twice daily), with further adjustment depending on calcium levels. Six patients already displayed nephrocalcinosis. Severe side effects were reported in one child: two episodes of symptomatic hypocalcemia and one of iatrogenic hypercalcemia; one teenager displayed dysgueusia. Calcium levels at H0 did not significantly increase whilst calcium at H4 and phosphate levels significantly increased and decreased, respectively. After 12 months, eGFR, calcium and age-standardized phosphate levels were 108 (90-122) mL/min/1.73 m2, 2.36 (2.23-2.48) mmol/L, 0.5 (-0.1 to 1.5), and 68 (63-74) nmol/L, respectively, with a significant decrease in phosphate levels (p = 0.01). Urinary calcium and calcium/creatinine ratio remained stable; no nephrolithiasis was observed but two moderate nephrocalcinosis appeared. Conclusion: Intermittent teriparatide therapy significantly improves calcium and phosphate control, without increasing calciuria. It appears to be safe and well-tolerated in children.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA