Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 533(3): 553-558, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32981683

RESUMEN

Coronaviruses infect many animals, including humans, due to interspecies transmission. Three of the known human coronaviruses: MERS, SARS-CoV-1, and SARS-CoV-2, the pathogen for the COVID-19 pandemic, cause severe disease. Improved methods to predict host specificity of coronaviruses will be valuable for identifying and controlling future outbreaks. The coronavirus S protein plays a key role in host specificity by attaching the virus to receptors on the cell membrane. We analyzed 1238 spike sequences for their host specificity. Spike sequences readily segregate in t-SNE embeddings into clusters of similar hosts and/or virus species. Machine learning with SVM, Logistic Regression, Decision Tree, Random Forest gave high average accuracies, F1 scores, sensitivities and specificities of 0.95-0.99. Importantly, sites identified by Decision Tree correspond to protein regions with known biological importance. These results demonstrate that spike sequences alone can be used to predict host specificity.


Asunto(s)
Biología Computacional/métodos , Coronavirus/patogenicidad , Especificidad del Huésped , Aprendizaje Automático , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Glicoproteína de la Espiga del Coronavirus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA