Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298129

RESUMEN

The downstream regulatory element antagonist modulator (DREAM) is a multifunctional Ca2+-sensitive protein exerting a dual mechanism of action to regulate several Ca2+-dependent processes. Upon sumoylation, DREAM enters in nucleus where it downregulates the expression of several genes provided with a consensus sequence named dream regulatory element (DRE). On the other hand, DREAM could also directly modulate the activity or the localization of several cytosolic and plasma membrane proteins. In this review, we summarize recent advances in the knowledge of DREAM dysregulation and DREAM-dependent epigenetic remodeling as a central mechanism in the progression of several diseases affecting central nervous system, including stroke, Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and neuropathic pain. Interestingly, DREAM seems to exert a common detrimental role in these diseases by inhibiting the transcription of several neuroprotective genes, including the sodium/calcium exchanger isoform 3 (NCX3), brain-derived neurotrophic factor (BDNF), pro-dynorphin, and c-fos. These findings lead to the concept that DREAM might represent a pharmacological target to ameliorate symptoms and reduce neurodegenerative processes in several pathological conditions affecting central nervous system.


Asunto(s)
Proteínas de Interacción con los Canales Kv , Proteínas Represoras , Proteínas de Interacción con los Canales Kv/metabolismo , Proteínas Represoras/genética , Encéfalo/metabolismo , Dinorfinas/metabolismo , Núcleo Celular/metabolismo
2.
Stroke ; 52(11): 3680-3691, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34694864

RESUMEN

Background and Purpose: NCX3 (Na+-Ca2+ exchanger 3) plays a relevant role in stroke; indeed its pharmacological blockade or its genetic ablation exacerbates brain ischemic damage, whereas its upregulation takes part in the neuroprotection elicited by ischemic preconditioning. To identify an effective strategy to induce an overexpression of NCX3, we examined transcription factors and epigenetic mechanisms potentially involved in NCX3 gene regulation. Methods: Brain ischemia and ischemic preconditioning were induced in vitro by exposure of cortical neurons to oxygen and glucose deprivation plus reoxygenation (OGD/Reoxy) and in vivo by transient middle cerebral artery occlusion. Western blot and quantitative real-time polymerase chain reaction were used to evaluate transcripts and proteins of GATA3 (GATA-binding protein 3), KMT2A (lysine-methyltransferase-2A), and NCX3. GATA3 and KMT2A binding on NCX3 gene was evaluated by chromatin immunoprecipitation and Rechromatin immunoprecipitation experiments. Results: Among the putative transcription factors sharing a consensus sequence on the ncx3 brain promoter region, GATA3 was the only able to up-regulate ncx3. Interestingly, GATA3 physically interacted with KMT2A, and their overexpression or knocking-down increased or downregulated NCX3 mRNA and protein, respectively. Notably, site-direct mutagenesis of GATA site on ncx3 brain promoter region counteracted GATA3 and KMT2A binding on NCX3 gene. More importantly, we found that in the perischemic cortical regions of preconditioned rats GATA3 recruited KMT2A and the complex H3K4-3me (trimethylated lysine-4 of histone-3) on ncx3 brain promoter region, thus reducing transient middle cerebral artery occlusion­induced damage. Consistently, in vivo silencing of either GATA3 or KMT2A prevented NCX3 upregulation and consequently the neuroprotective effect of preconditioning stimulus. The involvement of GATA3/KMT2A complex in neuroprotection elicited by ischemic preconditioning was further confirmed by in vitro experiments in which the knocking-down of GATA3 and KMT2A reverted the neuroprotection induced by NCX3 overexpression in cortical neurons exposed to anoxic preconditioning followed by oxygen and glucose deprivation plus reoxygenation. Conclusions: Collectively, our results revealed that GATA3/KMT2A complex epigenetically activates NCX3 gene transcription during ischemic preconditioning.


Asunto(s)
Factor de Transcripción GATA3/metabolismo , Regulación de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Precondicionamiento Isquémico , Neuroprotección/fisiología , Intercambiador de Sodio-Calcio/biosíntesis , Animales , Encéfalo/irrigación sanguínea , Isquemia Encefálica/metabolismo , Histonas/metabolismo , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
3.
Stroke ; 50(5): 1240-1249, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31009360

RESUMEN

Background and Purpose- Disturbance of endoplasmic reticulum (ER) Ca2+ homeostasis causes neuronal cell injury in stroke. By contrast, ischemic preconditioning (IPC)-a brief sublethal ischemic episode affording tolerance to a subsequent ischemic insult-restores ER Ca2+ homeostasis. Under physiological conditions, ER calcium content is continuously refilled by the interaction between the ER-located Ca2+ sensor STIM (stromal interacting molecule) 1 and the plasma membrane channel ORAI1 (a structural component of the CRAC calcium channel)-2 key mediators of the store-operated calcium entry (SOCE) mechanism. However, the role played by ORAI1 and STIM1 in stroke and in IPC-induced neuroprotection during stroke remains unknown. Therefore, we explored whether ORAI1 and STIM1 might be involved in stroke pathogenesis and in IPC-induced neuroprotection. Methods- Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia and IPC were induced in rats by transient middle cerebral artery occlusion. Expression of ORAI1 and STIM1 transcripts and proteins and their immunosignals were detected by qRT-PCR, Western blot, and immunocytochemistry, respectively. SOCE and Ca2+ release-activated Ca2+ currents (ICRAC) were measured by Fura-2 AM video imaging and patch-clamp electrophysiology in whole-cell configuration, respectively. Results- STIM1 and ORAI1 protein expression and immunosignals decreased in the ipsilesional temporoparietal cortex of rats subjected to transient middle cerebral artery occlusion followed by reperfusion. Analogously, in primary hypoxic cortical neurons, STIM1 and ORAI1 transcript and protein levels decreased concurrently with SOCE and Ca2+ release-activated Ca2+currents. By contrast, IPC induced SOCE and Ca2+ release-activated Ca2+current upregulation, thereby preventing STIM1 and ORAI1 downregulation induced by oxygen and glucose deprivation+reoxygenation. Silencing of STIM1 or ORAI1 prevented IPC-induced tolerance and caused ER stress, as measured by GRP78 (78-kDa glucose regulated protein) and caspase-3 upregulation. Conclusions- ORAI1 and STIM1, which participate in SOCE, take part in stroke pathophysiology and play an important role in IPC-induced neuroprotection.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Precondicionamiento Isquémico/métodos , Proteínas de la Membrana/metabolismo , Neuroprotección/fisiología , Proteína ORAI1/metabolismo , Accidente Cerebrovascular/prevención & control , Molécula de Interacción Estromal 1/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Ratas , Ratas Wistar , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
4.
J Biol Chem ; 290(3): 1319-31, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25416782

RESUMEN

NGF induces neuronal differentiation by modulating [Ca(2+)]i. However, the role of the three isoforms of the main Ca(2+)-extruding system, the Na(+)/Ca(2+) exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca(2+)]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca(2+) content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na(+) currents and 1,3-benzenedicarboxylic acid, 4,4'-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na(+)]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca(2+) content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca(2+)]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca(2+) content and PI3K signaling.


Asunto(s)
Encéfalo/embriología , Calcio/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuronas/citología , Neuronas/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Diferenciación Celular , Retículo Endoplásmico/metabolismo , Activación Enzimática , Homeostasis , Mutación , Neuritas/metabolismo , Células PC12 , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Sodio/metabolismo
5.
Stroke ; 47(4): 1085-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26979866

RESUMEN

BACKGROUND AND PURPOSE: The small ubiquitin-like modifier (SUMO), a ubiquitin-like protein involved in posttranslational protein modifications, is activated by several conditions, such as heat stress, hypoxia, and hibernation and confers neuroprotection. Sumoylation enzymes and substrates are expressed also at the plasma membrane level. Among the numerous plasma membrane proteins controlling ionic homeostasis during cerebral ischemia, 1 of the 3 brain sodium/calcium exchangers (NCX3), exerts a protective role during ischemic preconditioning. In this study, we evaluated whether NCX3 is a target for sumoylation and whether this posttranslational modification participates in ischemic preconditioning-induced neuroprotection. To test these hypotheses, we analyzed (1) SUMO1 conjugation pattern after ischemic preconditioning; (2) the effect of SUMO1 knockdown on the ischemic damage after transient middle cerebral artery occlusion and ischemic preconditioning, (3) the possible interaction between SUMO1 and NCX3 and (4) the molecular determinants of NCX3 sequence responsible for sumoylation. METHODS: Focal brain ischemia and ischemic preconditioning were induced in rats by middle cerebral artery occlusion. SUMOylation was evaluated by western blot and immunohistochemistry. SUMO1 and NCX3 interaction was analyzed by site-directed mutagenesis and immunoprecipitation assay. RESULTS: We found that (1) SUMO1 knockdown worsened ischemic damage and reduced the protective effect of preconditioning; (2) SUMO1 bound to NCX3 at lysine residue 590, and its silencing increased NCX3 degradation; and (3) NCX3 sumoylation participates in SUMO1 protective role during ischemic preconditioning. Thus, our results demonstrate that NCX3 sumoylation confers additional neuroprotection in ischemic preconditioning. CONCLUSIONS: Finally, this study suggests that NCX3 sumoylation might be a new target to enhance ischemic preconditioning-induced neuroprotection.


Asunto(s)
Encéfalo/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Precondicionamiento Isquémico , Neuroprotección/fisiología , Proteína SUMO-1/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Encéfalo/patología , Infarto de la Arteria Cerebral Media/patología , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Sumoilación
6.
Mol Ther ; 23(3): 465-76, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25582710

RESUMEN

The plasma membrane Na(+)/Ca(2+) exchanger (NCX) is a high-capacity ionic transporter that exchanges 3Na(+) ions for 1Ca(2+) ion. The first 20 amino acids of the f-loop, named exchanger inhibitory peptide (XIP(NCX1)), represent an autoinhibitory region involved in the Na(+)-dependent inactivation of the exchanger. Previous research has shown that an exogenous peptide having the same amino acid sequence as the XIP(NCX1) region exerts an inhibitory effect on NCX activity. In this study, we identified another regulatory peptide, named P1, which corresponds to the 562-688aa region of the exchanger. Patch-clamp analysis revealed that P1 increased the activity of the exchanger, whereas the XIP inhibited it. Furthermore, P1 colocalized with NCX1 thus suggesting a direct binding interaction. In addition, site-directed mutagenesis experiments revealed that the binding and the stimulatory effect of P1 requires a functional XIP(NCX1) domain on NCX1 thereby suggesting that P1 increases the exchanger activity by counteracting the action of this autoinhibitory sequence. Taken together, these results open a new strategy for developing peptidomimetic compounds that, by mimicking the functional pharmacophore of P1, might increase NCX1 activity and thus exert a therapeutic action in those diseases in which an increase in NCX1 activity might be helpful.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Péptidos/farmacología , Intercambiador de Sodio-Calcio/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Cricetinae , Expresión Génica , Transporte Iónico , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Miocardio/metabolismo , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/metabolismo , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sodio/metabolismo , Intercambiador de Sodio-Calcio/agonistas , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/química , Intercambiador de Sodio-Calcio/genética
7.
J Cell Sci ; 126(Pt 24): 5566-77, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24101730

RESUMEN

The mitochondrial influx and efflux of Ca(2+) play a relevant role in cytosolic and mitochondrial Ca(2+) homeostasis, and contribute to the regulation of mitochondrial functions in neurons. The mitochondrial Na(+)/Ca(2+) exchanger, which was first postulated in 1974, has been primarily investigated only from a functional point of view, and its identity and localization in the mitochondria have been a matter of debate over the past three decades. Recently, a Li(+)-dependent Na(+)/Ca(2+) exchanger extruding Ca(2+) from the matrix has been found in the inner mitochondrial membrane of neuronal cells. However, evidence has been provided that the outer membrane is impermeable to Ca(2+) efflux into the cytoplasm. In this study, we demonstrate for the first time that the nuclear-encoded NCX3 isoform (1) is located on the outer mitochondrial membrane (OMM) of neurons; (2) colocalizes and immunoprecipitates with AKAP121 (also known as AKAP1), a member of the protein kinase A anchoring proteins (AKAPs) present on the outer membrane; (3) extrudes Ca(2+) from mitochondria through AKAP121 interaction in a PKA-mediated manner, both under normoxia and hypoxia; and (4) improves cell survival when it works in the Ca(2+) efflux mode at the level of the OMM. Collectively, these results suggest that, in neurons, NCX3 regulates mitochondrial Ca(2+) handling from the OMM through an AKAP121-anchored signaling complex, thus promoting cell survival during hypoxia.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcio/metabolismo , Neuronas/fisiología , Intercambiador de Sodio-Calcio/fisiología , Animales , Muerte Celular , Hipoxia de la Célula , Línea Celular , Supervivencia Celular , Cricetinae , Perros , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Ratas
8.
J Am Heart Assoc ; 13(6): e030460, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456444

RESUMEN

BACKGROUND: REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS: Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS: If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.


Asunto(s)
Neuroblastoma , Accidente Cerebrovascular , Humanos , Ratones , Masculino , Animales , Metilación de ADN , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo , Epigénesis Genética , ADN
9.
J Neurosci ; 32(31): 10609-17, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22855810

RESUMEN

Although the amyloid-ß(1-42) (Aß(1-42)) peptide involved in Alzheimer's disease is known to cause a dysregulation of intracellular Ca(2+) homeostasis, its molecular mechanisms still remain unclear. We report that the extracellular-dependent early increase (30 min) in intracellular calcium concentration ([Ca(2+)](i)), following Aß(1-42) exposure, caused the activation of calpain that in turn elicited a cleavage of the Na(+)/Ca(2+) exchanger isoform NCX3. This cleavage generated a hyperfunctional form of the antiporter and increased NCX currents (I(NCX)) in the reverse mode of operation. Interestingly, this NCX3 calpain-dependent cleavage was essential for the Aß(1-42)-dependent I(NCX) increase. Indeed, the calpain inhibitor calpeptin and the removal of the calpain-cleavage recognition sequence, via site-directed mutagenesis, abolished this effect. Moreover, the enhanced NCX3 activity was paralleled by an increased Ca(2+) content in the endoplasmic reticulum (ER) stores. Remarkably, the silencing in PC-12 cells or the knocking-out in mice of the ncx3 gene prevented the enhancement of both I(NCX) and Ca(2+) content in ER stores, suggesting that NCX3 was involved in the increase of ER Ca(2+) content stimulated by Aß(1-42). By contrast, in the late phase (72 h), when the NCX3 proteolytic cleavage abruptly ceased, the occurrence of a parallel reduction in ER Ca(2+) content triggered ER stress, as revealed by caspase-12 activation. Concomitantly, the late increase in [Ca(2+)](i) coincided with neuronal death. Interestingly, NCX3 silencing caused an earlier activation of Aß(1-42)-induced caspase-12. Indeed, in NCX3-silenced neurons, Aß(1-42) exposure hastened caspase-dependent apoptosis, thus reinforcing neuronal cell death. These results suggest that Aß(1-42), through Ca(2+)-dependent calpain activation, generates a hyperfunctional form of NCX3 that, by increasing Ca(2+) content into ER, delays caspase-12 activation and thus neuronal death.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Caspasa 3/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Proteolisis/efectos de los fármacos , Intercambiador de Sodio-Calcio/metabolismo , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Calpaína/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Quelantes/farmacología , Cricetinae , Perros , Relación Dosis-Respuesta a Droga , Ácido Egtácico/farmacología , Embrión de Mamíferos , Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Noqueados , Factor de Crecimiento Nervioso/farmacología , Técnicas de Placa-Clamp , Interferencia de ARN/fisiología , Ratas , Sodio/metabolismo , Intercambiador de Sodio-Calcio/genética , Factores de Tiempo , Transfección , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
10.
Mol Pharmacol ; 83(1): 142-56, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23066092

RESUMEN

Previous studies have demonstrated that the knockdown or knockout of the three Na(+)/Ca(2+) exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, worsens ischemic brain damage. This suggests that the activation of these antiporters exerts a neuroprotective action against stroke damage. However, drugs able to increase the activity of NCXs are not yet available. We have here succeeded in synthesizing a new compound, named neurounina-1 (7-nitro-5-phenyl-1-(pyrrolidin-1-ylmethyl)-1H-benzo[e][1,4]diazepin-2(3H)-one), provided with an high lipophilicity index and able to increase NCX activity. Ca(2+) radiotracer, Fura-2 microfluorimetry, and patch-clamp techniques revealed that neurounina-1 stimulated NCX1 and NCX2 activities with an EC(50) in the picomolar to low nanomolar range, whereas it did not affect NCX3 activity. Furthermore, by using chimera strategy and site-directed mutagenesis, three specific molecular determinants of NCX1 responsible for neurounina-1 activity were identified in the α-repeats. Interestingly, NCX3 became responsive to neurounina-1 when both α-repeats were replaced with the corresponding regions of NCX1. In vitro studies showed that 10 nM neurounina-1 reduced cell death of primary cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation. Moreover, in vitro, neurounina-1 also reduced γ-aminobutyric acid (GABA) release, enhanced GABA(A) currents, and inhibited both glutamate release and N-methyl-d-aspartate receptors. More important, neurounina-1 proved to have a wide therapeutic window in vivo. Indeed, when administered at doses of 0.003 to 30 µg/kg i.p., it was able to reduce the infarct volume of mice subjected to transient middle cerebral artery occlusion even up to 3 to 5 hours after stroke onset. Collectively, the present study shows that neurounina-1 exerts a remarkable neuroprotective effect during stroke and increases NCX1 and NCX2 activities.


Asunto(s)
Benzodiazepinonas/farmacología , Fármacos Neuroprotectores/farmacología , Pirrolidinas/farmacología , Intercambiador de Sodio-Calcio/metabolismo , Accidente Cerebrovascular/prevención & control , Animales , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Perros , Flumazenil/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Ácido Glutámico/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutación , Neuronas/efectos de los fármacos , Neuronas/patología , Técnicas de Placa-Clamp , Ratas , Receptores de GABA-A/fisiología , Receptores de N-Metil-D-Aspartato/agonistas , Intercambiador de Sodio-Calcio/genética , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
Neurobiol Dis ; 50: 76-85, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23069678

RESUMEN

The Na(+)-Ca(2+) exchanger 1 (NCX1), a bidirectional transporter that mediates the electrogenic exchange of one calcium ion for three sodium ions across the plasma membrane, is known to be involved in brain ischemia. Since the RE1-silencing transcription factor (REST) is a key modulator of neuronal gene expression in several neurological conditions, we studied the possible involvement of REST in regulating NCX1 gene expression and activity in stroke. We found that: (1) REST binds in a sequence specific manner and represses through H4 deacetylation, ncx1 gene in neuronal cells by recruting CoREST, but not mSin3A. (2) In neurons and in SH-SY5Y cells REST silencing by siRNA and site-direct mutagenesis of REST consensus sequence on NCX1 brain promoter determined an increase in NCX1 promoter activity. (3) By contrast, REST overexpression caused a reduction in NCX1 protein expression and activity. (4) Interestingly, in rats subjected to transient middle cerebral artery occlusion (tMCAO) and in organotypic hippocampal slices or SH-SY5Y cells exposed to oxygen and glucose deprivation (OGD) plus reoxygenation (RX), the increase in REST was associated with a decrease in NCX1. However, this reduction was reverted by REST silencing. (5) REST knocking down, along with the deriving NCX1 overexpression in the deep V and VIb cortical layers caused a marked reduction in infarct volume after tMCAO. Double silencing of REST and NCX1 completely abolished neuroprotection induced by siREST administration. Collectively, these results demonstrate that REST, by regulating NCX1 expression, may represent a potential druggable target for the treatment of brain ischemia.


Asunto(s)
Isquemia Encefálica/genética , Regulación de la Expresión Génica/genética , Neuronas/metabolismo , Proteínas Represoras/genética , Intercambiador de Sodio-Calcio/genética , Animales , Secuencia de Bases , Western Blotting , Isquemia Encefálica/metabolismo , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Técnica del Anticuerpo Fluorescente , Hipocampo/metabolismo , Humanos , Microscopía Confocal , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Transfección
12.
Adv Exp Med Biol ; 961: 203-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23224881

RESUMEN

Mitochondria are now recognized as one of the main intracellular calcium-storing organelles which play a key role in the intracellular calcium signalling. Indeed, besides performing oxidative phosphorylation, mitochondria are able to sense and shape calcium (Ca(2+)) transients, thus controlling cytosolic Ca(2+) signals and Ca(2+)-dependent protein activity. It has been well established for many years that mitochondria have a huge capacity to accumulate calcium. While the physiological significance of this pathway was hotly debated until relatively recently, it is now clear that the ability of mitochondria in calcium handling is a ubiquitous phenomenon described in every cell system in which the issue has been addressed.In this chapter, we will review the molecular mechanisms involved in the regulation of mitochondrial calcium cycling in physiological conditions with particular regard to the role played by the mitochondrial Na(+)/Ca(2+) exchanger.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Intercambiador de Sodio-Calcio/metabolismo , Animales , Humanos , Proteínas Mitocondriales/genética , Intercambiador de Sodio-Calcio/genética
13.
Adv Exp Med Biol ; 961: 213-22, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23224882

RESUMEN

Because no isoform-specific blocker of NCX has ever been synthesized, a more selective strategy to identify the role of each antiporter isoform in the brain was represented by the generation of knockout and knockin mice for the different isoforms of the antiporter.Experiments performed in NCX2 and NCX3 knockout mice provided evidence that these two isoforms participate in spatial learning and memory consolidation, although in an opposite manner. These new data from ncx2-/- and ncx3-/- mice may open new experimental avenues for the development of effective therapeutic compounds that, by selectively inhibiting or activating these molecular targets, could treat patients affected by cognitive impairment including Alzheimer's, Parkinson's, Huntington's diseases, and infarct dementia.More importantly, knockout and knockin mice also provided new relevant information on the role played by NCX in maintaining the intracellular Na(+) and Ca(2+) homeostasis and in protecting neurons during brain ischemia. In particular, both ncx2-/- and ncx3-/- mice showed an increased neuronal vulnerability after the ischemic insult induced by transient middle cerebral artery occlusion.As the ubiquitous deletion of NCX1 brings about to an early death of embryos because of a lack of heartbeat, this strategy could not be successfully pursued. However, information on the role of NCX1 in normal and ischemic brain could be obtained by developing conditional knockout mice lacking NCX1 in the brain. Preliminarily results obtained in these conditional mice suggest that also NCX1 protects neurons from ischemic cell death.Overall, the use of genetic-modified mice for NCX1, NCX2, and NCX3 represents a fruitful strategy to characterize the physiological role exerted by NCX in CNS and to identify the isoforms of the antiporter as potential molecular targets for therapeutic intervention in cerebral ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Discapacidades para el Aprendizaje/metabolismo , Trastornos de la Memoria/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Humanos , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/patología , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Intercambiador de Sodio-Calcio/genética
14.
Int J Biol Sci ; 19(9): 2695-2710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324938

RESUMEN

Background: The inhibition of histone deacetylase 9 (HDAC9) represents a promising druggable target for stroke intervention. Indeed, HDAC9 is overexpressed in neurons after brain ischemia where exerts a neurodetrimental role. However, mechanisms of HDAC9-dependent neuronal cell death are not yet well established. Methods: Brain ischemia was obtained in vitro by primary cortical neurons exposed to glucose deprivation plus reoxygenation (OGD/Rx) and in vivo by transient middle cerebral artery occlusion. Western blot and quantitative real-time polymerase chain reaction were used to evaluate transcript and protein levels. Chromatin immunoprecipitation was used to evaluate the binding of transcription factors to the promoter of target genes. Cell viability was measured by MTT and LDH assays. Ferroptosis was evaluated by iron overload and 4-hydroxynonenal (4-HNE) release. Results: Our results showed that HDAC9 binds to hypoxia-inducible factor 1 (HIF-1) and specificity protein 1 (Sp1), two transcription activators of transferrin 1 receptor (TfR1) and glutathione peroxidase 4 (GPX4) genes, respectively, in neuronal cells exposed to OGD/Rx. Consequently, HDAC9 induced: (1) an increase in protein level of HIF-1 by deacetylation and deubiquitination, thus promoting the transcription of the pro-ferroptotic TfR1 gene; and (2) a reduction in Sp1 protein levels by deacetylation and ubiquitination, thus resulting in a down-regulation of the anti-ferroptotic GPX4 gene. Supporting these results, the silencing of HDAC9 partially prevented either HIF-1 increase and Sp1 reduction after OGD/Rx. Interestingly, silencing of the neurodetrimental factors, HDAC9, HIF-1, or TfR1 or the overexpression of the prosurvival factors Sp1 or GPX4 significantly reduced a well-known marker of ferroptosis 4-HNE after OGD/Rx. More important, in vivo, intracerebroventricular injection of siHDAC9 reduced 4-HNE levels after stroke by preventing: (1) HIF-1 and TfR1 increase and thus the augmented intracellular iron overload; and (2) a reduction of Sp1 and its target gene GPX4. Conclusions: Collectively, results obtained suggest that HDAC9 mediates post-traslational modifications of HIF-1 and Sp1 that, in turn, increases TfR1 and decreases GPX4 expression, thus promoting neuronal ferroptosis in in vitro and in vivo models of stroke.


Asunto(s)
Isquemia Encefálica , Sobrecarga de Hierro , Accidente Cerebrovascular , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Factor 1 Inducible por Hipoxia , Accidente Cerebrovascular/genética , Isquemia Encefálica/metabolismo , Muerte Celular/genética , Factor de Transcripción Sp1/genética , Histona Desacetilasas/genética , Proteínas Represoras
15.
J Neurosci ; 31(20): 7312-21, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21593315

RESUMEN

Long-term potentiation (LTP) depends on the coordinated regulation of an ensemble of proteins related to Ca(2+) homeostasis, including Ca(2+) transporters. One of the major players in the regulation of intracellular Ca(2+) ([Ca(2+)](i)) homeostasis in neurons is the sodium/calcium exchanger (NCX), which represents the principal mechanism of Ca(2+) clearance in the synaptic sites of hippocampal neurons. Because NCX3, one of the three brain isoforms of the NCX family, is highly expressed in the hippocampal subfields involved in LTP, we hypothesized that it might represent a potential candidate for LTP modulation. To test this hypothesis, we first examined the effect of ncx3 gene ablation on NCX currents (I(NCX)) and Ca(2+) homeostasis in hippocampal neurons. ncx3(-/-) neurons displayed a reduced I(NCX), a higher basal level of [Ca(2+)](i), and a significantly delayed clearance of [Ca(2+)](i) following depolarization. Furthermore, measurement of field EPSPs, recorded from the CA1 area, revealed that ncx3(-/-) mice had an impaired basal synaptic transmission. Moreover, hippocampal slices from ncx3(-/-) mice exhibited a worsening in LTP compared with congenic ncx3(+/+). Consistently, immunohistochemical and immunoblot analysis indicated that in the hippocampus of ncx3(-/-) mice both Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) expression and the phosphoCaMKIIα/CaMKIIα ratio were significantly reduced compared with ncx3(+/+). Interestingly, ncx3(-/-) mice displayed a reduced spatial learning and memory performance, as revealed by the novel object recognition, Barnes maze, and context-dependent fear conditioning assays. Collectively, our findings demonstrate that the deletion of the ncx3 gene in mice has detrimental consequences on basal synaptic transmission, LTP regulation, spatial learning, and memory performance.


Asunto(s)
Hipocampo/fisiopatología , Potenciación a Largo Plazo/genética , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Intercambiador de Sodio-Calcio/genética , Conducta Espacial/fisiología , Animales , Células Cultivadas , Silenciador del Gen , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Intercambiador de Sodio-Calcio/metabolismo , Transmisión Sináptica/genética
16.
J Neurochem ; 122(5): 911-22, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22708976

RESUMEN

We evaluated whether changes in expression and activity of the three sodium/calcium exchanger isoforms, NCX1, NCX2, and NCX3 occurred in PC12 cells when the extracellular-signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 mitogen-activated protein kinases (MAPKs) were silenced, pharmacologically blocked, or activated with nerve growth factor (NGF). Several findings suggesting that MAPKs control NCX emerged: (1) A decrease in NCX1 and NCX3 basal expression occurred when JNK or MEK1, the extracellular-signal-regulated kinases 1/2 upstream activator, were pharmacologically blocked, respectively; (2) NGF increased cAMP response element-binding 1 (CREB1) and Specificity Protein 1 (Sp1) binding to ncx1 promoter and CREB1 binding to two different sequences close to ncx2 transcription start site on genomic DNA; (3) An up-regulation of NCX1 and NCX3, abrogated upon either MEK1 or p38 blockade, and a down-regulation of NCX2, abolished upon p38 blockade, occurred upon NGF-induced MAPK activation. The NCX1 up-regulation was abolished upon either CREB1 or Sp1 silencing, whereas NCX2 down-regulation was abrogated only by CREB1 silencing. The NCX3 up-regulation was unaffected by CREB1 or Sp1 silencing and abolished upon proteasomal inhibition; (4) Whole-cell Na(+) /Ca(2+) exchange decreased when MEK1 and JNK were blocked and increased when MAPKs were activated by NGF. Collectively, these results demonstrate a MAPK-dependent regulation of NCX expression and activity which could be relevant in mediating some of the effects of MAPKs in neurons.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , AMP Cíclico/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , MAP Quinasa Quinasa 4 , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Células PC12/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Intercambiador de Sodio-Calcio/clasificación , Factor de Transcripción Sp1/metabolismo , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos
17.
Cell Calcium ; 101: 102525, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995919

RESUMEN

Excessive calcium (Ca2+) release from the endoplasmic reticulum (ER) represents an important hallmark of several neurodegenerative diseases. ER is recharged from Ca2+ through the so-called Store-Operated Calcium Entry (SOCE) thus providing Ca2+ signals to regulate critical cell functions. Single transmembrane-spanning domain protein stromal interacting molecule 1 (STIM1), mainly residing in the ER, and plasmalemmal channel Orai1 represent the SOCE key components at neuronal level. However, many other proteins participate to ER Ca2+ refilling including the Na+/Ca2+ exchanger isoform 1 (NCX1), whose regulation by ER remains unknown. In this study, we tested the possibility that neuronal NCX1 may take part to SOCE through the interaction with STIM1. In rat primary cortical neurons and in nerve growth factor (NGF)-differentiated PC12 cells NCX1 knocking down by siRNA strategy significantly prevented SOCE as well as SOCE pharmacological inhibition by SKF-96365 and 2-APB. A significant reduction of SOCE was recorded also in synaptosomes from ncx1-/- mice brain compared with ncx1+/+ mice. Double labeling confocal experiments showed a large co-localization between NCX1 and STIM1 in rat primary cortical neurons. Accordingly, NCX1 and STIM1 co-immunoprecipitated and functionally interacted each other during ischemic preconditioning, a phenomenon inducing ischemic tolerance. However, STIM1 knocking down reduced NCX1 activity recorded by either patch-clamp electrophysiology or Fura-2 single-cell microfluorimetry. Furthermore, canonical transient receptor potential channel 6 (TRPC6) was identified as the mechanism mediating local increase of sodium (Na+) useful to drive NCX1 reverse mode and, therefore, NCX1-mediated Ca2+ refilling. In fact, TRPC6 not only interacted with STIM1, as shown by the co-localization and co-immunoprecipitation with the ER Ca2+ sensor, but it also mediated 1,3-Benzenedicarboxylic acid, 4,4'-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester (SBFI)-monitored Na+ increase elicited by thapsigargin in primary cortical neurons. Accordingly, efficient TRPC6 knockdown prevented thapsigargin-induced intracellular Na+ elevation and SOCE. Collectively, we identify NCX1 as a new partner of STIM1 in mediating SOCE, whose activation in the reverse mode may be facilitated by the local increase of Na+ concentration due to the interaction between STIM1 and TRPC6 in primary cortical neurons.


Asunto(s)
Calcio , Neuronas , Intercambiador de Sodio-Calcio , Molécula de Interacción Estromal 1 , Canal Catiónico TRPC6 , Animales , Calcio/metabolismo , Señalización del Calcio , Proteínas de la Membrana/metabolismo , Ratones , Neuronas/metabolismo , Proteína ORAI1/genética , Isoformas de Proteínas/genética , Ratas , Intercambiador de Sodio-Calcio/genética , Molécula de Interacción Estromal 1/genética
18.
Cell Calcium ; 102: 102542, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114589

RESUMEN

The isoform 2 of sodium-calcium exchanger family (NCX2) is selectively expressed in neuronal and glial cells where it participates in Ca2+-clearance following neuronal depolarization, synaptic plasticity, hippocampal-dependent learning and memory consolidation processes. On the other hand, NCX2 is also involved in a neuroprotective effect following stroke. Despite the relevance of this antiporter under physiological and pathophysiological conditions, no studies have been reported on its genetic/epigenetic regulation. Therefore, we identified, cloned, and characterized a transcriptional regulatory region (R3) of rat Slc8a2 gene encoding for NCX2. In particular, R3 sequence displayed a promoter activity in PC12, SH-SY5Y and U87MG cell lines consistent with their endogenous NCX2 expression levels. On the other hand, R3 failed to induce detectable luciferase activity in BHK cell line that does not express NCX2 under control conditions. These data support the hypothesis that R3 represents the promoter region of NCX2. Moreover, among several conserved binding sequences for transcription factors identified by in-silico analysis, we evaluated the transcriptional regulation and the binding sites of Sp1, Sp4, NFkB1, GATA2 and CREB1 on R3 sequence by using site-direct mutagenesis and ChIP assays. In particular, transfection of Sp1, Sp4, and CREB1 enhanced both R3 promoter activity and NCX2 transcription in PC12 cell line. More important, CREB1 transfection also enhanced NCX2 protein levels and NCX reverse mode activity in PC12 cells. Altogether, these data suggested that: (i) the identified region contained the regulatory promoter of the antiporter; (ii) NCX2 might represent a downstream effector of transcription factors involved in synaptic plasticity and neuronal survival.


Asunto(s)
Calcio , Factores de Transcripción , Animales , Calcio/metabolismo , Epigénesis Genética , Regiones Promotoras Genéticas , Ratas , Sodio/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Factores de Transcripción/metabolismo
19.
Mol Pharmacol ; 79(3): 558-68, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21159997

RESUMEN

In this study, the role of nitric oxide (NO) in the modulation of the activity of NCX1, NCX2, and NCX3 exchangers was investigated in baby hamster kidney cells singly transfected with each of these isoforms by single-cell Fura-2-microfluorometry and patch clamp. Furthermore, the molecular determinants of NO on each isoform were identified by deletion, site-directed mutagenesis, and chimera strategies. Our data revealed four main findings. First, the NO-donor S-nitroso-N-acetylpenicillamine (SNAP; 10 nM) and the NO-precursor L-arginine (10 mM) were both able to increase NCX1 activity in a cGMP-independent way. Moreover, within the amino acid sequence 723 to 734 of the f-loop, Cys730 resulted as the target of NO on NCX1. Second, SNAP and L-arginine were able to increase NCX2 activity, but this effect was prevented by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). In addition, the membrane-permeable 8-bromoguanosine-cGMP alone was able to mimic the stimulatory effect of the gaseous mediator, suggesting the involvement of a cGMP-dependent mechanism. Within the amino acid sequence 699 to 744 of the f-loop, Ser713 was the NO molecular determinant on the NCX2 protein; Third, NCX3 activity was instead down-regulated by NO in a cGMP-independent manner. This NO-inhibitory action was exerted at the level of Cys156 in the α1-region outside the f-loop. Finally, the activity of the two NCX3 chimeras-obtained by the replacement of the NO-insensitive NCX3 region with the homologous NO-sensitive segments of NCX1 or NCX2-was potentiated by SNAP. Together, the present data demonstrate that NO differently regulates the activity of the three gene products NCX1, NCX2, and NCX3 by modulating specific molecular determinants.


Asunto(s)
Óxido Nítrico/farmacología , Intercambiador de Sodio-Calcio/efectos de los fármacos , Animales , Sitios de Unión , Western Blotting , Calcio/metabolismo , Línea Celular , Cricetinae , Citometría de Flujo , Riñón/citología , Potenciales de la Membrana/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Isoformas de Proteínas/efectos de los fármacos , S-Nitroso-N-Acetilpenicilamina/farmacología
20.
Front Neurosci ; 15: 771580, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899171

RESUMEN

Methylmercury (MeHg) exposure has been related to amyotrophic lateral sclerosis (ALS) pathogenesis and molecular mechanisms of its neurotoxicity has been associated to an overexpression of the Restrictive Element 1 Silencing Transcription factor (REST). Herein, we evaluated the possibility that MeHg could accelerate neuronal death of the motor neuron-like NSC34 cells transiently overexpressing the human Cu2+/Zn2+superoxide dismutase 1 (SOD1) gene mutated at glycine 93 (SOD1-G93A). Indeed, SOD1-G93A cells exposed to 100 nM MeHg for 24 h showed a reduction in cell viability, as compared to cells transfected with empty vector or with unmutated SOD1 construct. Interestingly, cell survival reduction in SOD1-G93A cells was associated with an increase of REST mRNA and protein levels. Furthermore, MeHg increased the expression of the transcriptional factor Sp1 and promoted its binding to REST gene promoter sequence. Notably, Sp1 knockdown reverted MeHg-induced REST increase. Co-immunoprecipitation experiments demonstrated that Sp1 physically interacted with the epigenetic writer Lysine-Methyltransferase-2A (KMT2A). Moreover, knocking-down of KMT2A reduced MeHg-induced REST mRNA and protein increase in SOD1-G93A cells. Finally, we found that MeHg-induced REST up-regulation triggered necropoptotic cell death, monitored by RIPK1 increased protein expression. Interestingly, REST knockdown or treatment with the necroptosis inhibitor Necrostatin-1 (Nec) decelerated MeH-induced cell death in SOD1-G93A cells. Collectively, this study demonstrated that MeHg hastens necroptotic cell death in SOD1-G93A cells via Sp1/KMT2A complex, that by epigenetic mechanisms increases REST gene expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA