RESUMEN
BACKGROUND: Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data. METHODS: Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline. RESULTS: All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks. CONCLUSIONS: Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen , Técnicas Histológicas/métodos , Autopsia , Imagenología Tridimensional/métodosRESUMEN
To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains an open research question. This study was inspired by the disparity between the estimated intra-axonal axial diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging (NODDI) model (dâ¥=1.7µm2/ms). We first demonstrate how changing the assumed axial diffusivity results in considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simulated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial diffusivities of â¼2-2.5µm2/ms, in line with current literature. Crucially, our results demonstrate the importance of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when dealing with low SNR data.
Asunto(s)
Neuritas , Sustancia Blanca , Axones , Encéfalo , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , HumanosRESUMEN
The acquisition of MRI and histology in the same post-mortem tissue sample enables direct correlation between MRI and histologically-derived parameters. However, there still lacks a standardised automated pipeline to process histology data, with most studies relying on manual intervention. Here, we introduce an automated pipeline to extract a quantitative histological measure for staining density (stain area fraction, SAF) from multiple immunohistochemical (IHC) stains. The pipeline is designed to directly address key IHC artefacts related to tissue staining and slide digitisation. Here, the pipeline was applied to post-mortem human brain data from multiple subjects, relating MRI parameters (FA, MD, RD, AD, R2*, R1) to IHC slides stained for myelin, neurofilaments, microglia and activated microglia. Utilising high-quality MRI-histology co-registrations, we then performed whole-slide voxelwise comparisons (simple correlations, partial correlations and multiple regression analyses) between multimodal MRI- and IHC-derived parameters. The pipeline was found to be reproducible, robust to artefacts and generalisable across multiple IHC stains. Our partial correlation results suggest that some simple MRI-SAF correlations should be interpreted with caution, due to the co-localisation of other tissue features (e.g., myelin and neurofilaments). Further, we find activated microglia-a generic biomarker of inflammation-to consistently be the strongest predictor of high DTI FA and low RD, which may suggest sensitivity of diffusion MRI to aspects of neuroinflammation related to microglial activation, even after accounting for other microstructural changes (demyelination, axonal loss and general microglia infiltration). Together, these results show the utility of this approach in carefully curating IHC data and performing multimodal analyses to better understand microstructural relationships with MRI.
Asunto(s)
Colorantes , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética , Vaina de Mielina/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patologíaRESUMEN
PURPOSE: Ex vivo imaging is a commonly used approach to investigate the biophysical mechanism of orientation-dependent signal phase evolution in white matter. Yet, how phase measurements are influenced by the structural alteration in the tissue after formalin fixation is not fully understood. Here, we study the effects on magnetic susceptibility, microstructural compartmentalization, and chemical exchange measurement with a postmortem formalin-fixed whole-brain human tissue. METHODS: A formalin-fixed, postmortem human brain specimen was scanned with multiple orientations to the main magnetic field direction for robust bulk magnetic susceptibility measurement with conventional quantitative susceptibility imaging models. White matter samples were subsequently excised from the whole-brain specimen and scanned in multiple rotations on an MRI scanner to measure the anisotropic magnetic susceptibility and microstructure-related contributions in the signal phase and to validate the findings of the whole-brain data. RESULTS: The bulk isotropic magnetic susceptibility of ex vivo whole-brain imaging is comparable to in vivo imaging, with noticeable enhanced nonsusceptibility contributions. The excised specimen experiment reveals that anisotropic magnetic susceptibility and compartmentalization phase effect were considerably reduced in the formalin-fixed white matter specimens. CONCLUSIONS: Formalin-fixed postmortem white matter exhibits comparable isotropic magnetic susceptibility to previous in vivo imaging findings. However, the measured phase and magnitude data of the fixed white matter tissue shows a significantly weaker orientation dependency and compartmentalization effect. Alternatives to formalin fixation are needed to better reproduce the in vivo microstructural effects in postmortem samples.
Asunto(s)
Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Formaldehído , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagenRESUMEN
Multi-echo gradient echo (ME-GRE) magnetic resonance signal evolution in white matter has a strong dependence on the orientation of myelinated axons with respect to the main static field. Although analytical solutions have been able to predict some of the white matter (WM) signal behaviour of the hollow cylinder model, it has been shown that realistic models of WM offer a better description of the signal behaviour observed. In this work, we present a pipeline to (i) generate realistic 2D WM models with their microstructure based on real axon morphology with adjustable fiber volume fraction (FVF) and g-ratio. We (ii) simulate their interaction with the static magnetic field to be able to simulate their MR signal. For the first time, we (iii) demonstrate that realistic 2D WM models can be used to simulate a MR signal that provides a good approximation of the signal obtained from a real 3D WM model derived from electron microscopy. We then (iv) demonstrate in silico that 2D WM models can be used to predict microstructural parameters in a robust way if ME-GRE multi-orientation data is available and the main fiber orientation in each pixel is known using DTI. A deep learning network was trained and characterized in its ability to recover the desired microstructural parameters such as FVF, g-ratio, free and bound water transverse relaxation and magnetic susceptibility. Finally, the network was trained to recover these micro-structural parameters from an ex vivo dataset acquired in 9 orientations with respect to the magnetic field and 12 echo times. We demonstrate that this is an overdetermined problem and that as few as 3 orientations can already provide comparable results for some of the decoded metrics.
Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Neuroimagen/métodos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Anciano de 80 o más Años , Autopsia , Simulación por Computador , Estudios de Factibilidad , Femenino , Humanos , Imagen por Resonancia Magnética/normas , Microscopía ElectrónicaRESUMEN
Susceptibility weighted magnetic resonance imaging (MRI) is sensitive to the local concentration of iron and myelin. Here, we describe a robust image processing pipeline for quantitative susceptibility mapping (QSM) and R2* mapping of fixed post-mortem, whole-brain data. Using this pipeline, we compare the resulting quantitative maps in brains from patients with amyotrophic lateral sclerosis (ALS) and controls, with validation against iron and myelin histology. Twelve post-mortem brains were scanned with a multi-echo gradient echo sequence at 7T, from which susceptibility and R2* maps were generated. Semi-quantitative histological analysis for ferritin (the principal iron storage protein) and myelin proteolipid protein was performed in the primary motor, anterior cingulate and visual cortices. Magnetic susceptibility and R2* values in primary motor cortex were higher in ALS compared to control brains. Magnetic susceptibility and R2* showed positive correlations with both myelin and ferritin estimates from histology. Four out of nine ALS brains exhibited clearly visible hyperintense susceptibility and R2* values in the primary motor cortex. Our results demonstrate the potential for MRI-histology studies in whole, fixed post-mortem brains to investigate the biophysical source of susceptibility weighted MRI signals in neurodegenerative diseases like ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Ferritinas , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Diagnóstico , Femenino , Ferritinas/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Giro del Cíngulo/patología , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Corteza Motora/metabolismo , Corteza Motora/patología , Vaina de Mielina/metabolismo , Corteza Visual/diagnóstico por imagen , Corteza Visual/metabolismo , Corteza Visual/patologíaRESUMEN
INTRODUCTION: Recently, an additional trigeminothalamic tract - the dorsal trigeminothalamic tract - has been described in human brainstems by our group next to the known ventral trigeminothalamic tract. As various elements of the trigeminal system are known to be organised in a somatotopic fashion, the question arose whether the fibres within the trigeminal root show specific distributions patterns in their contribution to the ventral trigeminothalamic tract and dorsal trigeminothalamic tract specifically. METHODS: This study investigated the arrangement of the fibres in the trigeminal root by combining various imaging methods in the pons of 11 post-mortem specimens. The pons were investigated by polarised light imaging (PLI) (n = 4; to quantify fibre orientation; 100 µm interslice distance), histochemical staining methods (n = 3; to visualise the internal myeloarchitecture; 60 µm) and ultra-high field, post-mortem magnetic resonance imaging (MRI) (n = 4; for tractography; 500 µm interslice distance). RESULTS: This study shows that the fibres, from the point where the trigeminal root enters the brainstem, are distinctly arranged by their contribution to the ventral trigeminothalamic tract and dorsal trigeminothalamic tract. This finding is supported by both post-mortem, ultra-high dMRI and different light microscopy techniques. CONCLUSION: The data from this study suggest that the fibres in the superior half of the root contribute mainly to the ventral trigeminothalamic tract, whereas the fibres in the inferior half mainly contribute to the dorsal trigeminothalamic tract. Such a somatotopic organisation could possibly create new insights into the anatomical origin of trigeminal neuralgia and the clinical relevance of this somatotopic organisation should therefore be further explored.
Asunto(s)
Puente , Tronco Encefálico/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Puente/diagnóstico por imagen , Nervio Trigémino/diagnóstico por imagen , Neuralgia del TrigéminoRESUMEN
The combination of diffusion MRI (dMRI) with microscopy provides unique opportunities to study microstructural features of tissue, particularly when acquired in the same sample. Microscopy is frequently used to validate dMRI microstructure models, addressing the indirect nature of dMRI signals. Typically, these modalities are analysed separately, and microscopy is taken as a gold standard against which dMRI-derived parameters are validated. Here we propose an alternative approach in which we combine dMRI and microscopy data obtained from the same tissue sample to drive a single, joint model. This simultaneous analysis allows us to take advantage of the breadth of information provided by complementary data acquired from different modalities. By applying this framework to a spherical-deconvolution analysis, we are able to overcome a known degeneracy between fibre dispersion and radial diffusion. Spherical-deconvolution based approaches typically estimate a global fibre response function to determine the fibre orientation distribution in each voxel. However, the assumption of a 'brain-wide' fibre response function may be challenged if the diffusion characteristics of white matter vary across the brain. Using a generative joint dMRI-histology model, we demonstrate that the fibre response function is dependent on local anatomy, and that current spherical-deconvolution based models may be overestimating dispersion and underestimating the number of distinct fibre populations per voxel.
Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Microscopía , HumanosRESUMEN
PURPOSE: To demonstrate how reference data affect the quantification of the apparent diffusion coefficient (ADC) in long diffusion time measurements with diffusion-weighted stimulated echo acquisition mode (DW-STEAM) measurements, and to present a modification to avoid contribution from crusher gradients in DW-STEAM. METHODS: For DW-STEAM, reference measurements at long diffusion times have significant b0 value, because b = 0 cannot be achieved in practice as a result of the need for signal spoiling. Two strategies for acquiring reference data over a range of diffusion times were considered: constant diffusion weighting (fixed-b0 ) and constant gradient area (fixed-q0 ). Fixed-b0 and fixed-q0 were compared using signal calculations for systems with one and two diffusion coefficients, and experimentally using data from postmortem human corpus callosum samples. RESULTS: Calculations of biexponential diffusion decay show that the ADC is underestimated for reference images with b > 0, which can induce an apparent time-dependence for fixed-q0 . Restricted systems were also found to be affected. Experimentally, the exaggeration of the diffusion time-dependent effect under fixed-q0 versus fixed-b0 was in a range predicted theoretically, accounting for 62% (longitudinal) and 35% (radial) of the time dependence observed in white matter. CONCLUSIONS: Variation in the b-value of reference measurements in DW-STEAM can induce artificial diffusion time dependence in ADC, even in the absence of restriction. Magn Reson Med 79:952-959, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Cuerpo Calloso/diagnóstico por imagen , Humanos , Procesamiento de Señales Asistido por ComputadorRESUMEN
Diffusion MRI is an exquisitely sensitive probe of tissue microstructure, and is currently the only non-invasive measure of the brain's fibre architecture. As this technique becomes more sophisticated and microstructurally informative, there is increasing value in comparing diffusion MRI with microscopic imaging in the same tissue samples. This study compared estimates of fibre orientation dispersion in white matter derived from diffusion MRI to reference measures of dispersion obtained from polarized light imaging and histology. Three post-mortem brain specimens were scanned with diffusion MRI and analyzed with a two-compartment dispersion model. The specimens were then sectioned for microscopy, including polarized light imaging estimates of fibre orientation and histological quantitative estimates of myelin and astrocytes. Dispersion estimates were correlated on region - and voxel-wise levels in the corpus callosum, the centrum semiovale and the corticospinal tract. The region-wise analysis yielded correlation coefficients of r = 0.79 for the diffusion MRI and histology comparison, while r = 0.60 was reported for the comparison with polarized light imaging. In the corpus callosum, we observed a pattern of higher dispersion at the midline compared to its lateral aspects. This pattern was present in all modalities and the dispersion profiles from microscopy and diffusion MRI were highly correlated. The astrocytes appeared to have minor contribution to dispersion observed with diffusion MRI. These results demonstrate that fibre orientation dispersion estimates from diffusion MRI represents the tissue architecture well. Dispersion models might be improved by more faithfully incorporating an informed mapping based on microscopy data.
Asunto(s)
Astrocitos , Imagen de Difusión por Resonancia Magnética/métodos , Técnicas Histológicas/métodos , Microscopía/métodos , Vaina de Mielina , Bancos de Tejidos , Sustancia Blanca/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Imagen de Difusión por Resonancia Magnética/normas , Técnicas Histológicas/normas , Humanos , Masculino , Microscopía/normas , Microscopía de Polarización/métodos , Microscopía de Polarización/normas , Persona de Mediana EdadRESUMEN
Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available.
Asunto(s)
Conectoma , Macaca , Animales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Autopsia , Conectoma/métodosRESUMEN
Post-mortem magnetic resonance imaging (MRI) provides the opportunity to acquire high-resolution datasets to investigate neuroanatomy and validate the origins of image contrast through microscopy comparisons. We introduce the Digital Brain Bank (open.win.ox.ac.uk/DigitalBrainBank), a data release platform providing open access to curated, multimodal post-mortem neuroimaging datasets. Datasets span three themes-Digital Neuroanatomist: datasets for detailed neuroanatomical investigations; Digital Brain Zoo: datasets for comparative neuroanatomy; and Digital Pathologist: datasets for neuropathology investigations. The first Digital Brain Bank data release includes 21 distinctive whole-brain diffusion MRI datasets for structural connectivity investigations, alongside microscopy and complementary MRI modalities. This includes one of the highest-resolution whole-brain human diffusion MRI datasets ever acquired, whole-brain diffusion MRI in fourteen nonhuman primate species, and one of the largest post-mortem whole-brain cohort imaging studies in neurodegeneration. The Digital Brain Bank is the culmination of our lab's investment into post-mortem MRI methodology and MRI-microscopy analysis techniques. This manuscript provides a detailed overview of our work with post-mortem imaging to date, including the development of diffusion MRI methods to image large post-mortem samples, including whole, human brains. Taken together, the Digital Brain Bank provides cross-scale, cross-species datasets facilitating the incorporation of post-mortem data into neuroimaging studies.
Asunto(s)
Acceso a la Información , Encéfalo , Animales , Autopsia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , NeuroimagenRESUMEN
Microscopic features (that is, microstructure) of axons affect neural circuit activity through characteristics such as conduction speed. To what extent axonal microstructure in white matter relates to functional connectivity (synchrony) between brain regions is largely unknown. Using MRI data in 11,354 subjects, we constructed multivariate models that predict functional connectivity of pairs of brain regions from the microstructural signature of white matter pathways that connect them. Microstructure-derived models provided predictions of functional connectivity that explained 3.5% of cross-subject variance on average (ranging from 1-13%, or r = 0.1-0.36) and reached statistical significance in 90% of the brain regions considered. The microstructure-function relationships were associated with genetic variants, co-located with genes DAAM1 and LPAR1, that have previously been linked to neural development. Our results demonstrate that variation in white matter microstructure predicts a fraction of functional connectivity across individuals, and that this relationship is underpinned by genetic variability in certain brain areas.
Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Fenotipo , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Anciano , Encéfalo/crecimiento & desarrollo , Mapeo Encefálico , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Masculino , Proteínas de Microfilamentos , Persona de Mediana Edad , Modelos Neurológicos , Análisis Multivariante , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Receptores del Ácido Lisofosfatídico/genética , Proteínas de Unión al GTP rhoRESUMEN
Classic anatomical atlases depict a contralateral hemispheral representation of each side of the face. Recently, however, a bilateral projection of each hemiface was hypothesized, based on animal studies that showed the coexistence of an additional trigeminothalamic tract sprouting from the trigeminal principal sensory nucleus that ascends ipsilaterally. This study aims to provide an anatomical substrate for the hypothesized bilateral projection. Three post-mortem human brainstems were scanned for anatomical and diffusion magnetic resonance imaging at 11.7T. The trigeminal tracts were delineated in each brainstem using track density imaging (TDI) and tractography. To evaluate the reconstructed tracts, the same brainstems were sectioned for polarized light imaging (PLI). Anatomical 11.7T MRI shows a dispersion of the trigeminal tract (tt) into a ventral and dorsal portion. This bifurcation was also seen on the TDI maps, tractography results and PLI images of all three specimens. Referring to a similar anatomic feature in primate brains, the dorsal and ventral tracts were named the dorsal and ventral trigeminothalamic tract (dtt and vtt), respectively. This study shows that both the dtt and vtt are present in humans, indicating that each hemiface has a bilateral projection, although the functional relevance of these tracts cannot be determined by the present anatomical study. If both tracts convey noxious stimuli, this could open up new insights into and treatments for orofacial pain in patients.
Asunto(s)
Tronco Encefálico/anatomía & histología , Tronco Encefálico/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Cara/inervación , Microscopía de Polarización , Nervio Trigémino/anatomía & histología , Nervio Trigémino/diagnóstico por imagen , Anciano , Cadáver , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagenRESUMEN
Background: Destruction of the afferents by dorsal root entry zone (DREZ) surgery may be an effective treatment of intractable neuropathic pain, though it remains a high-risk surgical intervention. Potential complications due to the lesioning of structures within the cervical spinal cord other than the DREZ can be minimized by accurate knowledge of the optimal insertion angle [i.e., the angle between the DREZ and the posterior median sulcus (PMS)]. The employed insertion angle was based on measurements between the DREZ and the PMS on post-mortem transverse slices. However, new, more sophisticated imaging techniques are currently available and are thought to yield higher spatial resolution and more accurate images. Obejctive: This article measures the angle between the DREZ and the PMS on 11.7T post-mortem magnetic resonance images and compares these findings with polarized light imaging (PLI) microscopy images of the same specimens in order to quantify fiber orientation within the DREZ. Methods: To visualize the anatomy of the cervical DREZ, magnetic resonance imaging (MRI), diffusion-weighted MRI (dMRI), probabilistic tractography, and PLI were performed on three post-mortem human cervical spinal cords at level C5-C6. The MR data was used to measure the angle between the DREZ and the PMS. MR images were complemented by probabilistic tractography results. Then, the orientation of fibers within the DREZ was quantified by use of PLI microscopy. Results: Median angle between the DREZ and the PMS, as measured on MR-images, was found to be 40.1° (ranging from 34.2° to 49.1°) and 39.8° (ranging from 31.1° to 47.8°) in the left and right hemicord, respectively. Median fiber orientation within the DREZ, as quantified by PLI, was 28.5° (ranging from 12.0° to 44.3°) and 27.7° (ranging from 8.5° to 38.1°) in the left and right hemicord, respectively. Conclusion: Our study, which provides an improved understanding of the anatomy of the DREZ, the angle between the DREZ and the PMS and the median fiber orientation within the DREZ, could contribute to safer DREZ-lesioning surgery to treat chronic neuropathic pain in the future.