Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 241(1): 180-196, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37691304

RESUMEN

Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.


Asunto(s)
Infertilidad , Triticum , Triticum/genética , Pan , Calor , Fitomejoramiento , Alelos , Cromosomas , Infertilidad/genética
2.
Plant J ; 112(6): 1377-1395, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308414

RESUMEN

Carotenoids contribute to a variety of physiological processes in plants, functioning also as biosynthesis precursors of ABA and strigolactones (SLs). SL biosynthesis starts with the enzymatic conversion of all-trans-ß-carotene to 9-cis-ß-carotene by the DWARF27 (D27) isomerase. In Arabidopsis, D27 has two closely related paralogs, D27-LIKE1 and D27-LIKE2, which were predicted to be ß-carotene-isomerases. In the present study, we characterised D27-LIKE1 and identified some key aspects of its physiological and enzymatic functions in Arabidopsis. d27-like1-1 mutant does not display any strigolactone-deficient traits and exhibits a substantially higher 9-cis-violaxanthin content, which is accompanied by a slightly higher ABA level. In vitro feeding assays with recombinant D27-LIKE1 revealed that the protein exhibits affinity to all ß-carotene isoforms but with an exclusive preference towards trans/cis conversions and the interconversion between 9-cis, 13-cis and 15-cis-ß-carotene forms, and accepts zeaxanthin and violaxanthin as substrates. Finally, we present evidence showing that D27-LIKE1 mRNA is phloem mobile and D27-LIKE1 is an ancient isomerase with a long evolutionary history. In summary, we demonstrate that D27-LIKE1 is a carotenoid isomerase with multi-substrate specificity and has a characteristic preference towards the catalysation of cis/cis interconversion of carotenoids. Therefore, D27-LIKE1 is a potential regulator of carotenoid cis pools and, eventually, SL and ABA biosynthesis pathways.


Asunto(s)
Arabidopsis , Carotenoides , Carotenoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , beta Caroteno/metabolismo , Isomerasas/química , Isomerasas/genética , Isomerasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA