Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 298(7): 102105, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35671822

RESUMEN

Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising 25 and more different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly because of the revolutionary improvements in 3D cryo-EM methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. In addition, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.


Asunto(s)
Proteínas Bacterianas , Flagelos , Flagelina , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Flagelos/ultraestructura , Flagelina/metabolismo , Subunidades de Proteína/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(6): 2265-2273, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659146

RESUMEN

The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.


Asunto(s)
Genoma Bacteriano , Legionella/fisiología , Legionelosis/microbiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Biología Computacional/métodos , Evolución Molecular , Genómica/métodos , Humanos , Espacio Intracelular/microbiología , Legionella/clasificación , Filogenia , Dominios Proteicos
3.
Nat Commun ; 14(1): 2154, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059817

RESUMEN

Legionella pneumophila replicates intracellularly by secreting effectors via a type IV secretion system. One of these effectors is a eukaryotic methyltransferase (RomA) that methylates K14 of histone H3 (H3K14me3) to counteract host immune responses. However, it is not known how L. pneumophila infection catalyses H3K14 methylation as this residue is usually acetylated. Here we show that L. pneumophila secretes a eukaryotic-like histone deacetylase (LphD) that specifically targets H3K14ac and works in synergy with RomA. Both effectors target host chromatin and bind the HBO1 histone acetyltransferase complex that acetylates H3K14. Full activity of RomA is dependent on the presence of LphD as H3K14 methylation levels are significantly decreased in a ∆lphD mutant. The dependency of these two chromatin-modifying effectors on each other is further substantiated by mutational and virulence assays revealing that the presence of only one of these two effectors impairs intracellular replication, while a double knockout (∆lphD∆romA) can restore intracellular replication. Uniquely, we present evidence for "para-effectors", an effector pair, that actively and coordinately modify host histones to hijack the host response. The identification of epigenetic marks modulated by pathogens has the potential to lead to the development of innovative therapeutic strategies to counteract bacterial infection and strengthening host defences.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Legionella/metabolismo , Cromatina/metabolismo , Proteínas Bacterianas/metabolismo , Enfermedad de los Legionarios/genética , Histonas/metabolismo
4.
mBio ; 11(5)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024033

RESUMEN

Through coevolution with host cells, microorganisms have acquired mechanisms to avoid the detection by the host surveillance system and to use the cell's supplies to establish themselves. Indeed, certain pathogens have evolved proteins that imitate specific eukaryotic cell proteins, allowing them to manipulate host pathways, a phenomenon termed molecular mimicry. Bacterial "eukaryotic-like proteins" are a remarkable example of molecular mimicry. They are defined as proteins that strongly resemble eukaryotic proteins or that carry domains that are predominantly present in eukaryotes and that are generally absent from prokaryotes. The widest diversity of eukaryotic-like proteins known to date can be found in members of the bacterial genus Legionella, some of which cause a severe pneumonia in humans. The characterization of a number of these proteins shed light on their importance during infection. The subsequent identification of eukaryotic-like genes in the genomes of other amoeba-associated bacteria and bacterial symbionts suggested that eukaryotic-like proteins are a common means of bacterial evasion and communication, shaped by the continuous interactions between bacteria and their protozoan hosts. In this review, we discuss the concept of molecular mimicry using Legionella as an example and show that eukaryotic-like proteins effectively manipulate host cell pathways. The study of the function and evolution of such proteins is an exciting field of research that is leading us toward a better understanding of the complex world of bacterium-host interactions. Ultimately, this knowledge will teach us how host pathways are manipulated and how infections may possibly be tackled.


Asunto(s)
Coevolución Biológica/genética , Interacciones Microbiota-Huesped/genética , Legionella/genética , Imitación Molecular , Proteínas Bacterianas/genética , Genoma Bacteriano , Humanos , Legionella/patogenicidad , Factores de Virulencia/genética
5.
Annu Rev Pathol ; 15: 439-466, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31657966

RESUMEN

Legionella species are environmental gram-negative bacteria able to cause a severe form of pneumonia in humans known as Legionnaires' disease. Since the identification of Legionella pneumophila in 1977, four decades of research on Legionella biology and Legionnaires' disease have brought important insights into the biology of the bacteria and the molecular mechanisms that these intracellular pathogens use to cause disease in humans. Nowadays, Legionella species constitute a remarkable model of bacterial adaptation, with a genus genome shaped by their close coevolution with amoebae and an ability to exploit many hosts and signaling pathways through the secretion of a myriad of effector proteins, many of which have a eukaryotic origin. This review aims to discuss current knowledge of Legionella infection mechanisms and future research directions to be taken that might answer the many remaining open questions. This research will without a doubt be a terrific scientific journey worth taking.


Asunto(s)
Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/inmunología , Amoeba/genética , Amoeba/inmunología , Amoeba/patogenicidad , Células Eucariotas/inmunología , Células Eucariotas/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Legionella/clasificación , Legionella/genética , Legionella/inmunología , Legionella pneumophila/genética , Legionella pneumophila/inmunología , Enfermedad de los Legionarios/inmunología , Enfermedad de los Legionarios/patología
6.
Front Microbiol ; 11: 586285, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193236

RESUMEN

Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is the world's leading cause of death from an infectious disease. One of the main features of this pathogen is the complex and dynamic lipid composition of the cell envelope, which adapts to the variable host environment and defines the fate of infection by actively interacting with and modulating immune responses. However, while much has been learned about the enzymes of the numerous lipid pathways, little knowledge is available regarding the proteins and metabolic signals regulating lipid metabolism during M. tuberculosis infection. In this work, we constructed and characterized a FasR-deficient mutant in M. tuberculosis and demonstrated that FasR positively regulates fas and acpS expression. Lipidomic analysis of the wild type and mutant strains revealed complete rearrangement of most lipid components of the cell envelope, with phospholipids, mycolic acids, sulfolipids, and phthiocerol dimycocerosates relative abundance severely altered. As a consequence, replication of the mutant strain was impaired in macrophages leading to reduced virulence in a mouse model of infection. Moreover, we show that the fasR mutant resides in acidified cellular compartments, suggesting that the lipid perturbation caused by the mutation prevented M. tuberculosis inhibition of phagolysosome maturation. This study identified FasR as a novel factor involved in regulation of mycobacterial virulence and provides evidence for the essential role that modulation of lipid homeostasis plays in the outcome of M. tuberculosis infection.

7.
Open Biol ; 7(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28228470

RESUMEN

Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo, we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C12 to C18 acyl-CoAs, but not of long-chain acyl-CoAs (C19 to C24). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria.


Asunto(s)
Ácido Graso Sintasas/genética , Metabolismo de los Lípidos , Mycobacterium smegmatis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/biosíntesis , Regulación Bacteriana de la Expresión Génica , Mutación , Mycobacterium smegmatis/genética , Operón
8.
Nat Rev Microbiol ; 14(1): 5-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26594043

RESUMEN

Many bacterial pathogens have evolved the ability to subvert and exploit host functions in order to enter and replicate in eukaryotic cells. For example, bacteria have developed specific mechanisms to target eukaryotic organelles such as the nucleus, the mitochondria, the endoplasmic reticulum and the Golgi apparatus. In this Review, we highlight the most recent advances in our understanding of the mechanisms that bacterial pathogens use to target these organelles. We also discuss how these strategies allow bacteria to manipulate host functions and to ultimately enable bacterial infection.


Asunto(s)
Bacterias/crecimiento & desarrollo , Células Eucariotas/microbiología , Interacciones Huésped-Patógeno , Orgánulos/microbiología , Animales , Humanos , Modelos Biológicos , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA