Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Langmuir ; 40(13): 7038-7048, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511880

RESUMEN

The phospholipase A2 (PLA2) superfamily consists of lipolytic enzymes that hydrolyze specific cell membrane phospholipids and have long been considered a central hub of biosynthetic pathways, where their lipid metabolites exert a variety of physiological roles. A misregulated PLA2 activity is associated with mainly inflammatory-derived pathologies and thus has shown relevant therapeutic potential. Many natural and synthetic anti-inflammatory drugs (AIDs) have been proposed as direct modulators of PLA2 activity. However, despite the specific chemical properties that these drugs share in common, little is known about the indirect modulation able to finely tune membrane structural changes at the precise lipid-binding site. Here, we use a novel experimental strategy based on differential scanning calorimetry to systematically study the structural properties of lipid membrane systems during PLA2 cleavage and under the influence of several AIDs. For a better understanding of the AIDs-membrane interaction, we present a comprehensive and comparative set of molecular dynamics (MD) simulations. Our thermodynamic results clearly demonstrate that PLA2 cleavage is hindered by those AIDs that significantly reduce the lipid membrane cooperativity, while the rest of the AIDs oppositely tend to catalyze PLA2 activity to different extents. On the other hand, our MD simulations support experimental results by providing atomistic details on the binding, insertion, and dynamics of each AID on a pure lipid system; the drug efficacy to impact membrane cooperativity is related to the lipid order perturbation. This work suggests a membrane-based mechanism of action for diverse AIDs against PLA2 activity and provides relevant clues that must be considered in its modulation.


Asunto(s)
Simulación de Dinámica Molecular , Fosfolípidos , Fosfolipasas A2/química , Fosfolípidos/química , Membrana Celular/metabolismo , Fenómenos Biofísicos
2.
Biophys J ; 122(11): 1890-1899, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36369756

RESUMEN

The mammalian cell membrane consists of thousands of different lipid species, and this variety is critical for biological function. Alterations to this balance can be dangerous as they can lead to permanent disruption of lipid metabolism, a hallmark in several viral diseases. The Flaviviridae family is made up of positive single-stranded RNA viruses that assemble at or near the location of lipid droplet formation in the endoplasmic reticulum. These viruses are known to interfere with lipid metabolism during the onset of liver disease, albeit to different extents. Pathogenesis of these infections involves specific protein-lipid interactions that alter lipid sorting and metabolism to sustain propagation of the viral infection. Recent experimental studies identify a correlation between viral proteins and lipid content or location in the cell, but these do not assess membrane-embedded interactions. Molecular modeling, specifically molecular dynamics simulations, can provide molecular-level spatial and temporal resolution for characterization of biomolecular interactions. This review focuses on recent advancements and current knowledge gaps in the molecular mechanisms of lipid-mediated liver disease preceded by viral infection. We discuss three viruses from the Flaviviridae family: dengue, zika, and hepatitis C, with a particular focus on lipid interactions with their respective ion channels, known as viroporins.


Asunto(s)
Infecciones por Flaviviridae , Flaviviridae , Virosis , Infección por el Virus Zika , Virus Zika , Animales , Infecciones por Flaviviridae/metabolismo , Flaviviridae/genética , Flaviviridae/metabolismo , Hepacivirus , Virus Zika/metabolismo , Lípidos , Mamíferos
3.
J Struct Biol ; 215(3): 108013, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37586469

RESUMEN

Viral proteins interact with lipid membranes during various stages in the viral life cycle to propagate infection. p7 is an ion channel forming protein of Hepatitis C virus (HCV) that participates in viral assembly. Studies show that it has close ties to lipid metabolism in the cell and anionic phosphatidylserine (PS) lipids are suggested to be key for its permeabilizing function, but the mechanism of its interaction with the lipid environment is largely unknown. To begin unraveling the molecular processes of the protein, we evaluated the impact of lipid environment on the binding and insertion mechanism of p7 prior to channel formation and viral assembly using molecular dynamics simulations. It is seen that p7 is sensitive to its lipid environment and results in different remodeling patterns in membranes. Helix 1 (H1) is especially important for peptide insertion, with deeper entry taking place when the membrane contains phosphatidylserine (PS). Helix 2 (H2) and the adjacent loop connecting to Helix 3 (H3) prompts recruitment of phosphatidylethanolamine (PE) lipids to the protein binding site in membrane models with lower surface charge. This work provides perspectives on the interplay between protein-lipid dynamics and membrane composition, and insights on membrane reorganization in mechanisms of disease.


Asunto(s)
Fosfatidilserinas , Proteínas Viroporinas , Proteínas Viroporinas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Virales/química , Hepacivirus/química , Hepacivirus/metabolismo , Simulación de Dinámica Molecular
4.
Biophys J ; 120(6): 1097-1104, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33253634

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Computer simulations of complete viral particles can provide theoretical insights into large-scale viral processes including assembly, budding, egress, entry, and fusion. Detailed atomistic simulations are constrained to shorter timescales and require billion-atom simulations for these processes. Here, we report the current status and ongoing development of a largely "bottom-up" coarse-grained (CG) model of the SARS-CoV-2 virion. Data from a combination of cryo-electron microscopy (cryo-EM), x-ray crystallography, and computational predictions were used to build molecular models of structural SARS-CoV-2 proteins, which were then assembled into a complete virion model. We describe how CG molecular interactions can be derived from all-atom simulations, how viral behavior difficult to capture in atomistic simulations can be incorporated into the CG models, and how the CG models can be iteratively improved as new data become publicly available. Our initial CG model and the detailed methods presented are intended to serve as a resource for researchers working on COVID-19 who are interested in performing multiscale simulations of the SARS-CoV-2 virion.


Asunto(s)
Simulación de Dinámica Molecular , SARS-CoV-2/química , Virión/química , COVID-19 , Análisis de Componente Principal , Proteínas Virales/química
5.
Faraday Discuss ; 232(0): 49-67, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34543372

RESUMEN

Specific lipid-protein interactions are key for cellular processes, and even more so for the replication of pathogens. The COVID-19 pandemic has drastically changed our lives and caused the death of nearly four million people worldwide, as of this writing. SARS-CoV-2 is the virus that causes the disease and has been at the center of scientific research over the past year. Most of the research on the virus is focused on key players during its initial attack and entry into the cellular host; namely the S protein, its glycan shield, and its interactions with the ACE2 receptors of human cells. As cases continue to rise around the globe, and new mutants are identified, there is an urgent need to understand the mechanisms of this virus during different stages of its life cycle. Here, we consider two integral membrane proteins of SARS-CoV-2 known to be important for viral assembly and infectivity. We have used microsecond-long all-atom molecular dynamics to examine the lipid-protein and protein-protein interactions of the membrane (M) and envelope (E) structural proteins of SARS-CoV-2 in a complex membrane model. We contrast the two proposed protein complexes for each of these proteins, and quantify their effect on their local lipid environment. This ongoing work also aims to provide molecular-level understanding of the mechanisms of action of this virus to possibly aid in the design of novel treatments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteínas de la Membrana , Pandemias , Glicoproteína de la Espiga del Coronavirus
6.
Chem Rev ; 119(9): 6227-6269, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30785731

RESUMEN

The amphipathic nature of the lipid molecule (hydrophilic head and hydrophobic tails) enables it to act as a barrier between fluids with various properties and to sustain an environment where the processes critical to life may proceed. While computer simulations of biomolecules primarily investigate protein conformation and binding to drug-like molecules, these interactions often occur in the context of a lipid membrane. Chemical specificity of lipid models is essential to accurately represent the complex environment of the lipid membrane. This review discusses the development and performance of currently used chemically specific lipid force fields (FF) such as the CHARMM, AMBER, GROMOS, OPLS, and MARTINI families. Considerations in lipid FF development including lipid diversity, temperature dependence, phase behavior, and effects of atomic polarizability are considered, as well as methods and goals of parametrization. Applications of these FFs to complex and diverse models for cellular membranes are summarized. Lastly, areas for future development, such as efficient inclusion of long-range Lennard-Jones interactions (significant in transitions from polar to apolar media), accurate transmembrane dipole potential, and diffusion under periodic boundary conditions are considered.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Fosfolípidos/química , Fosfolípidos/metabolismo , Termodinámica
7.
Biochim Biophys Acta ; 1858(7 Pt B): 1584-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26903211

RESUMEN

Experimental biology has contributed to answer questions about the morphology of a system and how molecules organize themselves to maintain a healthy functional cell. Single-molecule techniques, optical and magnetic experiments, and fluorescence microscopy have come a long way to probe structural and dynamical information at multiple scales. However, some details are simply too small or the processes are too short-lived to detect by experiments. Computational biology provides a bridge to understand experimental results at the molecular level, makes predictions that have not been seen in vivo, and motivates new fields of research. This review focuses on the advances on peripheral membrane proteins (PMPs) studies; what is known about their interaction with membranes, their role in cell biology, and some limitations that both experiment and computation still have to overcome to gain better structural and functional understanding of these PMPs. As many recent reviews have acknowledged, interdisciplinary efforts between experiment and computation are needed in order to have useful models that lead future directions in the study of PMPs. We present new results of a case study on a PMP that behaves as an intricate machine controlling lipid homeostasis between cellular organelles, Osh4 in yeast Saccharomyces cerevisiae. Molecular dynamics simulations were run to examine the interaction between the protein and membrane models that reflect the lipid diversity of the endoplasmic reticulum and trans-Golgi membranes. Our study is consistent with experimental data showing several residues that interact to smaller or larger extent with the bilayer upon stable binding (~200 ns into the trajectory). We identified PHE239 as a key residue stabilizing the protein-membrane interaction along with two other binding regions, the ALPS-like motif and the ß6-ß7 loops in the mouth region of the protein. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Asunto(s)
Membrana Celular/química , Membrana Celular/ultraestructura , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Simulación de Dinámica Molecular , Sitios de Unión , Simulación por Computador , Modelos Químicos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Receptores de Esteroides/química , Receptores de Esteroides/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
8.
Biochemistry ; 54(45): 6852-61, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26497753

RESUMEN

Membrane lipids are important for the health and proper function of cell membranes. We have improved computational membrane models for specific organelles in yeast Saccharomyces cerevisiae to study the effect of lipid diversity on membrane structure and dynamics. Previous molecular dynamics simulations were performed by Jo et al. [(2009) Biophys J. 97, 50-58] on yeast membrane models having six lipid types with compositions averaged between the endoplasmic reticulum (ER) and the plasma membrane (PM). We incorporated ergosterol, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol lipids in our models to better describe the unique composition of the PM, ER, and trans-Golgi network (TGN) bilayers of yeast. Our results describe membrane structure based on order parameters (SCD), electron density profiles (EDPs), and lipid packing. The average surface area per lipid decreased from 63.8 ± 0.4 Å(2) in the ER to 47.1 ± 0.3 Å(2) in the PM, while the compressibility modulus (KA) varied in the opposite direction. The high SCD values for the PM lipids indicated a more ordered bilayer core, while the corresponding lipids in the ER and TGN models had lower parameters by a factor of at least 0.7. The hydrophobic core thickness (2DC) as estimated from EDPs is the thickest for PM, which is in agreement with estimates of hydrophobic regions of transmembrane proteins from the Orientation of Proteins in Membranes database. Our results show the importance of lipid diversity and composition on a bilayer's structural and mechanical properties, which in turn influences interactions with the proteins and membrane-bound molecules.


Asunto(s)
Simulación por Computador , Membranas Intracelulares/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Membrana Celular/química , Deuterio/química , Retículo Endoplásmico/química , Retículo Endoplásmico/ultraestructura , Ergosterol/química , Interacciones Hidrofóbicas e Hidrofílicas , Fluidez de la Membrana , Proteínas de la Membrana/química , Modelos Moleculares , Simulación de Dinámica Molecular , Ácidos Fosfatidicos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilinositoles/química , Fosfatidilserinas/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Red trans-Golgi/química , Red trans-Golgi/ultraestructura
9.
J Comput Chem ; 35(12): 957-63, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24638223

RESUMEN

Molecular dynamics (MD) simulation has become one of the key tools to obtain deeper insights into biological systems using various levels of descriptions such as all-atom, united-atom, and coarse-grained models. Recent advances in computing resources and MD programs have significantly accelerated the simulation time and thus increased the amount of trajectory data. Although many laboratories routinely perform MD simulations, analyzing MD trajectories is still time consuming and often a difficult task. ST-analyzer, http://im.bioinformatics.ku.edu/st-analyzer, is a standalone graphical user interface (GUI) toolset to perform various trajectory analyses. ST-analyzer has several outstanding features compared to other existing analysis tools: (i) handling various formats of trajectory files from MD programs, such as CHARMM, NAMD, GROMACS, and Amber, (ii) intuitive web-based GUI environment--minimizing administrative load and reducing burdens on the user from adapting new software environments, (iii) platform independent design--working with any existing operating system, (iv) easy integration into job queuing systems--providing options of batch processing either on the cluster or in an interactive mode, and (v) providing independence between foreground GUI and background modules--making it easier to add personal modules or to recycle/integrate pre-existing scripts utilizing other analysis tools. The current ST-analyzer contains nine main analysis modules that together contain 18 options, including density profile, lipid deuterium order parameters, surface area per lipid, and membrane hydrophobic thickness. This article introduces ST-analyzer with its design, implementation, and features, and also illustrates practical analysis of lipid bilayer simulations.


Asunto(s)
Gráficos por Computador , Internet , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Programas Informáticos
10.
J Comput Chem ; 35(27): 1997-2004, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25130509

RESUMEN

CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments.


Asunto(s)
Membrana Celular/química , Biología Computacional , Simulación de Dinámica Molecular , Programas Informáticos , Interfaz Usuario-Computador , Algoritmos , Gráficos por Computador , Escherichia coli/química , Internet , Lípidos/química , Modelos Moleculares , Estructura Molecular , Proteínas/química
11.
ACS Appl Bio Mater ; 7(2): 553-563, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36854194

RESUMEN

Triterpenoid saponins are organic compounds widely available in the plant kingdom. These molecules have received extensive attention due to their antibacterial activity against both Gram-negative and Gram-positive bacteria. Recent studies identified the antibacterial activity of saponins closely relates to their interaction with bacterial membrane lipids; however, molecular details of this interaction remain unclear. Increased understanding of the mechanisms to disrupt bacterial lipid bilayers can help to mitigate development of antibiotic resistance. Here, we examined the effect of chemical structure and deprotonation states of saponin on its interaction with a bacterial membrane model using molecular dynamics simulations. We run multiple simulations with a ternary lipid mixture of POPE/POPG/DPPG (80/15/5 mol %) and different saponin molecules. While all saponin structures can permanently bind the membrane, their location and orientation inside the bilayer depend on the sugar chains attached to their backbone. Similarly, cluster formation and stability also depend on the chemical structure of the saponin molecule. Deprotonation site affects interactions with the bilayer by modulating hydrophilicity of the molecules. At the low concentrations simulated in this work, there is no statistically significant change in the membrane properties upon saponin(s) binding, but the molecules do preferentially partition to POPE lipid environment.


Asunto(s)
Saponinas , Triterpenos , Membrana Dobles de Lípidos/química , Antibacterianos/farmacología , Saponinas/química
12.
J Phys Chem B ; 128(11): 2595-2606, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38477117

RESUMEN

The HIV-1 assembly process begins with a newly synthesized Gag polyprotein being targeted to the inner leaflet of the plasma membrane of the infected cells to form immature viral particles. Gag-membrane interactions are mediated through the myristoylated (Myr) N-terminal matrix (MA) domain of Gag, which eventually multimerize on the membrane to form trimers and higher order oligomers. The study of the structure and dynamics of peripheral membrane proteins like MA has been challenging for both experimental and computational studies due to the complex transient dynamics of protein-membrane interactions. Although the roles of anionic phospholipids (PIP2, PS) and the Myr group in the membrane targeting and stable membrane binding of MA are now well-established, the cooperative interactions between the MA monomers and MA-membrane remain elusive in the context of viral assembly and release. Our present study focuses on the membrane binding dynamics of a higher order oligomeric structure of MA protein (a dimer of trimers), which has not been explored before. Employing time-lagged independent component analysis (tICA) to our microsecond-long trajectories, we investigate conformational changes of the matrix protein induced by membrane binding. Interestingly, the Myr switch of an MA monomer correlates with the conformational switch of adjacent monomers in the same trimer. Together, our findings suggest complex protein dynamics during the formation of the immature HIV-1 lattice; while MA trimerization facilitates Myr insertion, MA trimer-trimer interactions in the immature lattice can hinder the same.


Asunto(s)
VIH-1 , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/metabolismo , Ensamble de Virus , Membrana Celular/metabolismo , Unión Proteica , Proteínas de la Matriz Viral/química
13.
ACS Chem Biol ; 19(2): 407-418, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38301282

RESUMEN

Mixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization, which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) are S-acylated during necroptosis. Here, we characterize the acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, with C184, C269, and C286 as possible acylation sites. Using all-atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane levels. Through investigations of the S-palmitoyltransferases that might acylate pMLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating the necroptotic activity. At a broader level, our findings shed light on the effect of S-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.


Asunto(s)
Necroptosis , Proteínas Quinasas , Proteínas Quinasas/metabolismo , Fosforilación , Membrana Celular/metabolismo , Apoptosis
14.
J Vis Exp ; (199)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37677042

RESUMEN

Lipids are structural building blocks of cell membranes; lipid species vary across cell organelles and across organisms. This variety results in different mechanical and structural properties in the membrane that directly impact the molecules and processes that occur at this interface. Lipid composition is dynamic and can serve to modulate cell signaling processes. Computational approaches are increasingly used to predict interactions between biomolecules and provide molecular insights to experimental observables. Molecular dynamics (MD) is a technique based on statistical mechanics that predicts the movement of atoms based on the forces that act on them. MD simulations can be used to characterize the interaction of biomolecules. Here, we briefly introduce the technique, outline practical steps for beginners who are interested in simulating lipid bilayers, demonstrate the protocol with beginner-friendly software, and discuss alternatives, challenges, and important considerations of the process. Particularly, we emphasize the relevance of using complex lipid mixtures to model a cell membrane of interest to capture the appropriate hydrophobic and mechanical environments in simulation. We also discuss some examples where membrane composition and properties modulate the interactions of bilayers with other biomolecules.


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Membrana Celular , Membrana Dobles de Lípidos , Movimiento
15.
bioRxiv ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790356

RESUMEN

The HIV-1 assembly process begins with a newly synthesized Gag polyprotein being targeted to the inner leaflet of the plasma membrane of the infected cells to form immature viral particles. Gag-membrane interactions are mediated through the myristoylated(Myr) N-terminal matrix (MA) domain of Gag which eventually multimerize on the membrane to form trimers and higher-order oligomers. The study of the structure and dynamics of peripheral membrane proteins like MA has been challenging for both experimental and computational studies due to the complex dynamics of protein-membrane interactions. Although the roles of anionic phospholipids (PIP2, PS) and the Myr group in the membrane targeting and stable membrane binding of MA are now well-established, the cooperative interactions between MA monomers and MA-membrane still remain elusive. Our present study focuses on the membrane binding dynamics of a higher-order oligomeric structure of MA protein (a dimer of trimers), which has not been explored before. Employing time-lagged independent component analysis (tICA) to our microsecond-long trajectories, we investigate conformational changes of the matrix protein induced by membrane binding. Interestingly, the Myr switch of a MA monomer correlates with the conformational switch of adjacent monomers in the same trimer. Together, our findings suggest that MA trimerization facilitates Myr insertion, but MA trimer-trimer interactions in the lattice of immature HIV-1 particles can hinder the same. Additionally, local lipid density patterns of different lipid species provide a signature of the initial stage of lipid-domain formation upon membrane binding of the protein complex.

16.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37645912

RESUMEN

Mixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by the electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) are S-acylated during necroptosis. Here, we characterize acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, C184, C269 and C286 are the possible acylation sites. Using all atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane level. Through systematic investigations of the S-palmitoyltransferases that might acylate MLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating necroptotic activity. At a broader level, our findings shed light on the effect of S-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.

17.
ACS Omega ; 7(11): 9765-9774, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350357

RESUMEN

This comprehensive molecular dynamics (MD) simulation and experimental study investigates the lipid bilayer interactions of dye D112 for potential photodynamic therapy (PDT) applications. PDT involves formation of a reactive oxidant species in the presence of a light sensitive molecule and light, interrupting cellular functions. D112 was developed as a photographic emulsifier, and we hypothesized that its combined cationic and lipophilic nature can render a superior photosensitizing property-crucial in various light therapies. The focus of this study is to elucidate the binding and insertion mechanisms of D112 with mixed lipid bilayers of anionic dipalmitoyl-phosphatidylserine (DPPS) and zwitterionic dipalmitoyl-phosphatidylcholine (DPPC) lipids to resemble cancer cell membranes. Our studies confirm initial electrostatic binding between the positively charged moieties of D112 and negatively charged lipid headgroups. Additionally, MD simulations combined with differential scanning calorimetry (DSC) studies confirm that D112-lipid interactions are governed by enthalpy-driven nonclassical hydrophobic effects in the membrane interior. It was further noted that despite the electrostatic preference of D112 toward the anionic lipids, D112 molecules colocalized on DPPC-rich domains after insertion. Atomistic level MD studies point toward two possible insertion mechanisms for D112: harpoon and flip. Further insights from the simulation showcase the interactions of low and high aggregates of D112 with the bilayer as the concentration of D112 increases in solution. The size of aggregates modulates the orientation and degree of insertion, providing important information for future studies on membrane permeation mechanisms.

18.
Front Chem ; 10: 1088058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712977

RESUMEN

Lipids, the structural part of membranes, play important roles in biological functions. However, our understanding of their implication in key cellular processes such as cell division and protein-lipid interaction is just emerging. This is the case for molecular interactions in mechanisms of cell death, where the role of lipids for protein localization and subsequent membrane permeabilization is key. For example, during the last stage of necroptosis, the mixed lineage kinase domain-like (MLKL) protein translocates and, eventually, permeabilizes the plasma membrane (PM). This process results in the leakage of cellular content, inducing an inflammatory response in the microenvironment that is conducive to oncogenesis and metastasis, among other pathologies that exhibit inflammatory activity. This work presents insights from long all-atom molecular dynamics (MD) simulations of complex membrane models for the PM of mammalian cells with an MLKL protein monomer. Our results show that the binding of the protein is initially driven by the electrostatic interactions of positively charged residues. The protein bound conformation modulates lipid recruitment to the binding site, which changes the local lipid environment recruiting PIP lipids and cholesterol, generating a unique fingerprint. These results increase our knowledge of protein-lipid interactions at the membrane interface in the context of molecular mechanisms of the necroptotic pathway, currently under investigation as a potential treatment target in cancer and inflamatory diseases.

19.
bioRxiv ; 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33948595

RESUMEN

Specific lipid-protein interactions are key for cellular processes, and even more so for the replication of pathogens. The COVID-19 pandemic has drastically changed our lives and cause the death of nearly three million people worldwide, as of this writing. SARS-CoV-2 is the virus that causes the disease and has been at the center of scientific research over the past year. Most of the research on the virus is focused on key players during its initial attack and entry into the cellular host; namely the S protein, its glycan shield, and its interactions with the ACE2 receptors of human cells. As cases continue to raise around the globe, and new mutants are identified, there is an urgent need to understand the mechanisms of this virus during different stages of its life cycle. Here, we consider two integral membrane proteins of SARS-CoV-2 known to be important for viral assembly and infectivity. We have used microsecond-long all-atom molecular dynamics to examine the lipid-protein and protein-protein interactions of the membrane (M) and envelope (E) structural proteins of SARS-CoV-2 in a complex membrane model. We contrast the two proposed protein complexes for each of these proteins, and quantify their effect on their local lipid environment. This ongoing work also aims to provide molecular-level understanding of the mechanisms of action of this virus to possibly aid in the design of novel treatments.

20.
Cell Chem Biol ; 28(9): 1298-1309.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-33848465

RESUMEN

Necroptosis is a form of cell death characterized by receptor-interacting protein kinase activity and plasma membrane permeabilization via mixed-lineage kinase-like protein (MLKL). This permeabilization is responsible for the inflammatory properties of necroptosis. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation. Here, we define the scope of protein acylation by saturated VLCFAs during necroptosis. We show that MLKL and phosphoMLKL, key for membrane permeabilization, are exclusively acylated during necroptosis. Reducing the levels of VLCFAs decreases their membrane recruitment, suggesting that acylation by VLCFAs contributes to their membrane localization. Acylation of phosphoMLKL occurs downstream of phosphorylation and oligomerization and appears to be, in part, mediated by ZDHHC5 (a palmitoyl transferase). We also show that disruption of endosomal trafficking increases cell viability during necroptosis, possibly by preventing recruitment, or removal, of phosphoMLKL from the plasma membrane.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/farmacología , Acilación/efectos de los fármacos , Aciltransferasas/metabolismo , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/química , Ácidos Grasos/química , Células HT29 , Humanos , Necroptosis/efectos de los fármacos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA