Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 589(7841): 287-292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268892

RESUMEN

Cardiovascular disease (CVD) is the leading cause of mortality in the world, with most CVD-related deaths resulting from myocardial infarction or stroke. The main underlying cause of thrombosis and cardiovascular events is atherosclerosis, an inflammatory disease that can remain asymptomatic for long periods. There is an urgent need for therapeutic and diagnostic options in this area. Atherosclerotic plaques contain autoantibodies1,2, and there is a connection between atherosclerosis and autoimmunity3. However, the immunogenic trigger and the effects of the autoantibody response during atherosclerosis are not well understood3-5. Here we performed high-throughput single-cell analysis of the atherosclerosis-associated antibody repertoire. Antibody gene sequencing of more than 1,700 B cells from atherogenic Ldlr-/- and control mice identified 56 antibodies expressed by in-vivo-expanded clones of B lymphocytes in the context of atherosclerosis. One-third of the expanded antibodies were reactive against atherosclerotic plaques, indicating that various antigens in the lesion can trigger antibody responses. Deep proteomics analysis identified ALDH4A1, a mitochondrial dehydrogenase involved in proline metabolism, as a target antigen of one of these autoantibodies, A12. ALDH4A1 distribution is altered during atherosclerosis, and circulating ALDH4A1 is increased in mice and humans with atherosclerosis, supporting the potential use of ALDH4A1 as a disease biomarker. Infusion of A12 antibodies into Ldlr-/- mice delayed plaque formation and reduced circulating free cholesterol and LDL, suggesting that anti-ALDH4A1 antibodies can protect against atherosclerosis progression and might have therapeutic potential in CVD.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/inmunología , Aterosclerosis/inmunología , Aterosclerosis/prevención & control , Autoanticuerpos/inmunología , Autoantígenos/inmunología , 1-Pirrolina-5-Carboxilato Deshidrogenasa/sangre , Animales , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Autoanticuerpos/sangre , Autoanticuerpos/genética , Autoantígenos/sangre , Autoinmunidad , Linfocitos B/inmunología , Biomarcadores/sangre , Colesterol/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Lipoproteínas LDL/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control , Proteómica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Análisis de la Célula Individual
2.
Arterioscler Thromb Vasc Biol ; 42(4): 462-469, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35196876

RESUMEN

BACKGROUND: The goal of this study was to determine whether boosting mitochondrial respiration prevents the development of fatal aortic ruptures triggered by atherosclerosis and hypertension. METHODS: Ang-II (angiotensin-II) was infused in ApoE (Apolipoprotein E)-deficient mice fed with a western diet to induce acute aortic aneurysms and lethal ruptures. RESULTS: We found decreased mitochondrial respiration and mitochondrial proteins in vascular smooth muscle cells from murine and human aortic aneurysms. Boosting NAD levels with nicotinamide riboside reduced the development of aortic aneurysms and sudden death by aortic ruptures. CONCLUSIONS: Targetable vascular metabolism is a new clinical strategy to prevent fatal aortic ruptures and sudden death in patients with aortic aneurysms.


Asunto(s)
Rotura de la Aorta , Aterosclerosis , Angiotensina II , Animales , Rotura de la Aorta/genética , Rotura de la Aorta/prevención & control , Aterosclerosis/genética , Aterosclerosis/prevención & control , Muerte Súbita , Humanos , Ratones , Proteínas Mitocondriales
3.
J Am Soc Nephrol ; 33(6): 1137-1153, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35545301

RESUMEN

BACKGROUND: C3 glomerulopathy (C3G) is a heterogeneous group of chronic renal diseases characterized predominantly by glomerular C3 deposition and complement dysregulation. Mutations in factor H-related (FHR) proteins resulting in duplicated dimerization domains are prototypical of C3G, although the underlying pathogenic mechanism is unclear. METHODS: Using in vitro and in vivo assays, we performed extensive characterization of an FHR-1 mutant with a duplicated dimerization domain. To assess the FHR-1 mutant's association with disease susceptibility and renal prognosis, we also analyzed CFHR1 copy number variations and FHR-1 plasma levels in two Spanish C3G cohorts and in a control population. RESULTS: Duplication of the dimerization domain conferred FHR-1 with an increased capacity to interact with C3-opsonized surfaces, which resulted in an excessive activation of the alternative pathway. This activation does not involve C3b binding competition with factor H. These findings support a scenario in which mutant FHR-1 binds to C3-activated fragments and recruits native C3 and C3b; this leads to formation of alternative pathway C3 convertases, which increases deposition of C3b molecules, overcoming FH regulation. This suggests that a balanced FHR-1/FH ratio is crucial to control complement amplification on opsonized surfaces. Consistent with this conceptual framework, we show that the genetic deficiency of FHR-1 or decreased FHR-1 in plasma confers protection against developing C3G and associates with better renal outcome. CONCLUSIONS: Our findings explain how FHR-1 mutants with duplicated dimerization domains result in predisposition to C3G. They also provide a pathogenic mechanism that may be shared by other diseases, such as IgA nephropathy or age-related macular degeneration, and identify FHR-1 as a potential novel therapeutic target in C3G.


Asunto(s)
Proteínas Inactivadoras del Complemento C3b , Glomerulonefritis por IGA , Proteínas Sanguíneas , Complemento C3/genética , Complemento C3/metabolismo , Proteínas Inactivadoras del Complemento C3b/genética , Proteínas Inactivadoras del Complemento C3b/metabolismo , Factor H de Complemento/genética , Variaciones en el Número de Copia de ADN , Susceptibilidad a Enfermedades , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/metabolismo , Humanos , Pronóstico
4.
Circulation ; 143(21): 2091-2109, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33709773

RESUMEN

BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. METHODS: Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. RESULTS: The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice. CONCLUSIONS: Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.


Asunto(s)
Aneurisma de la Aorta/fisiopatología , Síndrome de Marfan/genética , Mitocondrias/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Síndrome de Marfan/fisiopatología , Ratones
5.
Eur J Vasc Endovasc Surg ; 63(5): 751-758, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248436

RESUMEN

OBJECTIVE: Abdominal aortic aneurysm (AAA) is characterised by the presence of B cells and immunoglobulins in the aortic wall, mainly in the adventitia. Kappa (κ) and lambda (λ) free light chains (FLCs) are produced from B cells during immunoglobulin synthesis. This study investigated the presence and prognostic value of combined FLCs (cFLCs or summed κ and λ) in patients with AAA. METHODS: cFLCs were analysed by a turbidimetric specific assay in tissue conditioned media from AAA samples (n = 34) compared with healthy aortas (n = 34) from France and in plasma samples from patients with AAA (n = 434) and age matched controls (n = 104) selected from the Viborg Vascular (VIVA) AAA screening trial in Denmark. t test, logistic regression, and Cox regression were used to test whether plasma cFLCs serve as a marker for AAA presence and whether cFLCs were predictive of death, major adverse cardiovascular events (MACE), or major adverse lower limb events (MALE). RESULTS: Increased cFLC levels were detected in the AAA adventitial layer compared with the AAA medial layer and healthy media layer (13.65 ± 3.17 vs. 6.57 ± 1.01 vs. 0.49 ± 0.09 mg/L, respectively, p < .050). The upper tertile of plasma cFLCs was independently associated with AAA presence after correcting for confounders (odds ratio [OR] 7.596, 95% confidence intervals [CI] 3.117 - 18.513; p < .001). Of 434 patients with AAA, 89 (20.5%) died, 104 (24.0%) suffered MACE, and 63 (14.5%) suffered MALE, during a five year follow up. In univariable analysis, the cFLC upper tertile was associated with a higher risk of death, MACE, and MALE (p < .001 for all). After adjustment for confounders, cFLCs remained an independent predictor of all cause mortality (hazard ratio [HR] 4.310, 95% CI 2.157 - 8.609; p < .001), MACE (HR 2.153, 95% CI 1.218 - 3.804; p = .008), or MALE (HR 3.442, 95% CI 1.548 - 7.652; p = .002) for those in the upper tertile. CONCLUSION: Increased cFLCs are observed in adventitial tissue of patients with AAA, indicating local activation of B cells. Plasma cFLC levels are an independent predictor of death, MACE, and MALE in patients with AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aneurisma de la Aorta Abdominal/cirugía , Biomarcadores , Humanos , Cadenas Ligeras de Inmunoglobulina , Modelos Logísticos , Pronóstico , Factores de Riesgo
6.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232299

RESUMEN

Thymidine kinase (TK2) deficiency causes mitochondrial DNA depletion syndrome. We aimed to report the clinical, biochemical, genetic, histopathological, and ultrastructural features of a cohort of paediatric patients with TK2 deficiency. Mitochondrial DNA was isolated from muscle biopsies to assess depletions and deletions. The TK2 genes were sequenced using Sanger sequencing from genomic DNA. All muscle biopsies presented ragged red fibres (RRFs), and the prevalence was greater in younger ages, along with an increase in succinate dehydrogenase (SDH) activity and cytochrome c oxidase (COX)-negative fibres. An endomysial inflammatory infiltrate was observed in younger patients and was accompanied by an overexpression of major histocompatibility complex type I (MHC I). The immunofluorescence study for complex I and IV showed a greater number of fibres than those that were visualized by COX staining. In the ultrastructural analysis, we found three major types of mitochondrial alterations, consisting of concentrically arranged lamellar cristae, electrodense granules, and intramitochondrial vacuoles. The pathological features in the muscle showed substantial differences in the youngest patients when compared with those that had a later onset of the disease. Additional ultrastructural features are described in the muscle biopsy, such as sarcomeric de-structuration in the youngest patients with a more severe phenotype.


Asunto(s)
Miopatías Mitocondriales , Timidina Quinasa/metabolismo , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Succinato Deshidrogenasa , Timidina Quinasa/genética
7.
Hum Mutat ; 42(2): 142-149, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33300232

RESUMEN

Signal sequence receptor protein 4 (SSR4) is a subunit of the translocon-associated protein complex, which participates in the translocation of proteins across the endoplasmic reticulum membrane, enhancing the efficiency of N-linked glycosylation. Pathogenic variants in SSR4 cause a congenital disorder of glycosylation: SSR4-congenital disorders of glycosylation (CDG). We describe three SSR4-CDG boys and review the previously reported. All subjects presented with hypotonia, failure to thrive, developmental delay, and dysmorphic traits and showed a type 1 serum sialotransferrin profile, facilitating the diagnosis. Genetic confirmation of this X-linked CDG revealed one de novo hemizygous deletion, one maternally inherited deletion, and one de novo nonsense mutation of SSR4. The present subjects highlight the similarities with a connective tissue disorder (redundant skin, joint laxity, blue sclerae, and vascular tortuosity). The connective tissue problems are relevant, and require preventive rehabilitation measures. As an X-linked disorder, genetic counseling is essential.


Asunto(s)
Proteínas de Unión al Calcio , Trastornos Congénitos de Glicosilación , Glicoproteínas de Membrana , Receptores Citoplasmáticos y Nucleares , Receptores de Péptidos , Proteínas de Unión al Calcio/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Tejido Conectivo/patología , Glicosilación , Humanos , Masculino , Glicoproteínas de Membrana/genética , Fenotipo , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/genética
8.
Clin Chem ; 67(8): 1113-1121, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34352085

RESUMEN

BACKGROUND: Mitochondrial diseases (MD) are genetic metabolic disorders that impair normal mitochondrial structure or function. The aim of this study was to investigate the status of circulating cell-free mitochondrial DNA (ccfmtDNA) in cerebrospinal fluid (CSF), together with other biomarkers (growth differentiation factor-15 [GDF-15], alanine, and lactate), in a cohort of 25 patients with a molecular diagnosis of MD. METHODS: Measurement of ccfmtDNA was performed by using droplet digital PCR. RESULTS: The mean copy number of ccfmtDNA was approximately 6 times higher in the MD cohort compared to the control group; patients with mitochondrial deletion and depletion syndromes (MDD) had the higher levels. We also detected the presence of both wild-type mtDNA and mtDNA deletions in CSF samples of patients with single deletions. Patients with MDD with single deletions had significantly higher concentrations of GDF-15 in CSF than controls, whereas patients with point mutations in mitochondrial DNA presented no statistically significant differences. Additionally, we found a significant positive correlation between ccfmtDNA levels and GDF-15 concentrations (r = 0.59, P = 0.016). CONCLUSION: CSF ccfmtDNA levels are significantly higher in patients with MD in comparison to controls and, thus, they can be used as a novel biomarker for MD research. Our results could also be valuable to support the clinical outcome assessment of MD patients.


Asunto(s)
Ácidos Nucleicos Libres de Células , Enfermedades Mitocondriales , Biomarcadores/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética
9.
Ann Neurol ; 85(5): 740-751, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30873657

RESUMEN

OBJECTIVE: Phosphomannomutase deficiency (PMM2 congenital disorder of glycosylation [PMM2-CDG]) causes cerebellar syndrome and strokelike episodes (SLEs). SLEs are also described in patients with gain-of-function mutations in the CaV2.1 channel, for which acetazolamide therapy is suggested. Impairment in N-glycosylation of CaV2.1 promotes gain-of-function effects and may participate in cerebellar syndrome in PMM2-CDG. AZATAX was designed to establish whether acetazolamide is safe and improves cerebellar syndrome in PMM2-CDG. METHODS: A clinical trial included PMM2-CDG patients, with a 6-month first-phase single acetazolamide therapy group, followed by a randomized 5-week withdrawal phase. Safety was assessed. The primary outcome measure was improvement in the International Cooperative Ataxia Rating Scale (ICARS). Other measures were the Nijmegen Pediatric CDG Rating Scale (NPCRS), a syllable repetition test (PATA test), and cognitive scores. RESULTS: Twenty-four patients (mean age = 12.3 ± 4.5 years) were included, showing no serious adverse events. Thirteen patients required dose adjustment due to low bicarbonate or asthenia. There were improvements on ICARS (34.9 ± 23.2 vs 40.7 ± 24.8, effect size = 1.48, 95% confidence interval [CI] = 4.0-7.6, p < 0.001), detected at 6 weeks in 18 patients among the 20 responders, on NPCRS (95% CI = 0.3-1.6, p = 0.013) and on the PATA test (95% CI = 0.5-3.0, p = 0.006). Acetazolamide improved prothrombin time, factor X, and antithrombin. Clinical severity, epilepsy, and lipodystrophy predicted greater response. The randomized withdrawal phase showed ICARS worsening in the withdrawal group (effect size = 1.46, 95% CI = 2.65-7.52, p = 0.001). INTERPRETATION: AZATAX is the first clinical trial of PMM2-CDG. Acetazolamide is well tolerated and effective for motor cerebellar syndrome. Its ability to prevent SLEs and its long-term effects on kidney function should be addressed in future studies. Ann Neurol 2019;85:740-751.


Asunto(s)
Acetazolamida/uso terapéutico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Enfermedades Cerebelosas/diagnóstico , Enfermedades Cerebelosas/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Fosfotransferasas (Fosfomutasas)/deficiencia , Acetazolamida/farmacología , Adolescente , Inhibidores de Anhidrasa Carbónica/farmacología , Enfermedades Cerebelosas/genética , Niño , Preescolar , Trastornos Congénitos de Glicosilación/genética , Femenino , Glicosilación/efectos de los fármacos , Humanos , Masculino , Fosfotransferasas (Fosfomutasas)/genética , Método Simple Ciego , Resultado del Tratamiento , Adulto Joven
10.
J Inherit Metab Dis ; 43(2): 297-308, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31339582

RESUMEN

Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations. Two carried the reported deletion of exons 3 to 9, one homozygous, one heterozygous with a 22q11.21 microdeletion inherited in trans. The other subjects carried three novel homozygous (c.262C>T/p.Arg88*; c.220A>C/p.Thr74Pro; c.380+1G>A), and two further novel heterozygous (c.6_9del/p.Phe6del); c.11-13delTCT/p.Phe5del mutations. Immunoblot analysis detected a significant decrease of TANGO2 protein. Muscle histology showed mild variation of fiber diameter, no ragged-red/cytochrome c oxidase-negative fibers and a defect of multiple respiratory chain enzymes and coenzyme Q10 (CoQ10 ) in two cases, suggesting a possible secondary defect of oxidative phosphorylation. Proteomic analysis in fibroblasts revealed significant changes in components of the mitochondrial fatty acid oxidation, plasma membrane, endoplasmic reticulum-Golgi network and secretory pathways. Clinical presentation of TANGO2 mutations is homogeneous and clinically recognizable. The hemizygous mutations in two patients suggest that some mutations leading to allele loss are difficult to detect. A combined defect of the respiratory chain enzymes and CoQ10 with altered levels of several membrane proteins provides molecular insights into the underlying pathophysiology and may guide rational new therapeutic interventions.


Asunto(s)
Encefalopatías Metabólicas/genética , Enfermedades Mitocondriales/genética , Debilidad Muscular/genética , Mutación , Proteómica/métodos , Rabdomiólisis/genética , Encefalopatías Metabólicas/diagnóstico , Ácidos Grasos/metabolismo , Femenino , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Homocigoto , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/diagnóstico , Fosforilación Oxidativa , Fenotipo , Rabdomiólisis/diagnóstico , Secuenciación Completa del Genoma
11.
J Med Genet ; 56(4): 236-245, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30464053

RESUMEN

INTRODUCTION: Phosphomannomutase-2 deficiency (PMM2-CDG) is associated with a recognisable facial pattern. There are no early severity predictors for this disorder and no phenotype-genotype correlation. We performed a detailed dysmorphology evaluation to describe facial gestalt and its changes over time, to train digital recognition facial analysis tools and to identify early severity predictors. METHODS: Paediatric PMM2-CDG patients were evaluated and compared with controls. A computer-assisted recognition tool was trained. Through the evaluation of dysmorphic features (DFs), a simple categorisation was created and correlated with clinical and neurological scores, and neuroimaging. RESULTS: Dysmorphology analysis of 31 patients (4-19 years of age) identified eight major DFs (strabismus, upslanted eyes, long fingers, lipodystrophy, wide mouth, inverted nipples, long philtrum and joint laxity) with predictive value using receiver operating characteristic (ROC) curveanalysis (p<0.001). Dysmorphology categorisation using lipodystrophy and inverted nipples was employed to divide patients into three groups that are correlated with global clinical and neurological scores, and neuroimaging (p=0.005, 0.003 and 0.002, respectively). After Face2Gene training, PMM2-CDG patients were correctly identified at different ages. CONCLUSIONS: PMM2-CDG patients' DFs are consistent and inform about clinical severity when no clear phenotype-genotype correlation is known. We propose a classification of DFs into major and minor with diagnostic risk implications. At present, Face2Gene is useful to suggest PMM2-CDG. Regarding the prognostic value of DFs, we elaborated a simple severity dysmorphology categorisation with predictive value, and we identified five major DFs associated with clinical severity. Both dysmorphology and digital analysis may help physicians to diagnose PMM2-CDG sooner.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Facies , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Fosfotransferasas (Fosfomutasas)/deficiencia , Adolescente , Niño , Preescolar , Femenino , Pruebas Genéticas , Humanos , Masculino , Fosfotransferasas (Fosfomutasas)/genética , Curva ROC , España , Adulto Joven
12.
Stem Cells ; 35(7): 1687-1703, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28472853

RESUMEN

Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.


Asunto(s)
Ataxia/genética , Discapacidad Intelectual/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Debilidad Muscular/genética , Rabdomiólisis/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ataxia/enzimología , Ataxia/patología , Sistemas CRISPR-Cas , Diferenciación Celular , Preescolar , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Resultado Fatal , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Edición Génica/métodos , Expresión Génica , Genes Letales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/patología , Mitocondrias/enzimología , Mitocondrias/patología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/deficiencia , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Debilidad Muscular/enzimología , Debilidad Muscular/patología , Cultivo Primario de Células , Rabdomiólisis/enzimología , Rabdomiólisis/patología , Ubiquinona/genética
13.
J Inherit Metab Dis ; 41(6): 1147-1158, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29974349

RESUMEN

Mitochondrial diseases are a group of genetic disorders leading to the dysfunction of mitochondrial energy metabolism pathways. We aimed to assess the clinical phenotype and the biochemical cerebrospinal fluid (CSF) biogenic amine profiles of patients with different diagnoses of genetic mitochondrial diseases. We recruited 29 patients with genetically confirmed mitochondrial diseases harboring mutations in either nuclear or mitochondrial DNA (mtDNA) genes. Signs and symptoms of impaired neurotransmission and neuroradiological data were recorded. CSF monoamines, pterins, and 5-methyltetrahydrofolate (5MTHF) concentrations were analyzed using high-performance liquid chromatography with electrochemical and fluorescence detection procedures. The mtDNA mutations were studied by Sanger sequencing, Southern blot, and real-time PCR, and nuclear DNA was assessed either by Sanger or next-generation sequencing. Five out of 29 cases showed predominant dopaminergic signs not attributable to basal ganglia involvement, harboring mutations in different nuclear genes. A chi-square test showed a statistically significant association between high homovanillic acid (HVA) values and low CSF 5-MTHF values (chi-square = 10.916; p = 0.001). Seven out of the eight patients with high CSF HVA values showed cerebral folate deficiency. Five of them harbored mtDNA deletions associated with Kearns-Sayre syndrome (KSS), one had a mitochondrial point mutation at the mtDNA ATPase6 gene, and one had a POLG mutation. In conclusion, dopamine deficiency clinical signs were present in some patients with mitochondrial diseases with different genetic backgrounds. High CSF HVA values, together with a severe cerebral folate deficiency, were observed in KSS patients and in other mtDNA mutation syndromes.


Asunto(s)
Aminas Biogénicas/líquido cefalorraquídeo , Ácido Homovanílico/líquido cefalorraquídeo , Enfermedades Mitocondriales/líquido cefalorraquídeo , Enfermedades Mitocondriales/diagnóstico , Pterinas/líquido cefalorraquídeo , Tetrahidrofolatos/líquido cefalorraquídeo , ADN Mitocondrial/genética , Humanos , Enfermedades Mitocondriales/genética , Mutación Puntual , Eliminación de Secuencia , Tetrahidrofolatos/deficiencia
14.
Int J Mol Sci ; 19(2)2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29470411

RESUMEN

Stroke-like episodes (SLE) occur in phosphomannomutase deficiency (PMM2-CDG), and may complicate the course of channelopathies related to Familial Hemiplegic Migraine (FHM) caused by mutations in CACNA1A (encoding CaV2.1 channel). The underlying pathomechanisms are unknown. We analyze clinical variables to detect risk factors for SLE in a series of 43 PMM2-CDG patients. We explore the hypothesis of abnormal CaV2.1 function due to aberrant N-glycosylation as a potential novel pathomechanism of SLE and ataxia in PMM2-CDG by using whole-cell patch-clamp, N-glycosylation blockade and mutagenesis. Nine SLE were identified. Neuroimages showed no signs of stroke. Comparison of characteristics between SLE positive versus negative patients' group showed no differences. Acute and chronic phenotypes of patients with PMM2-CDG or CACNA1A channelopathies show similarities. Hypoglycosylation of both CaV2.1 subunits (α1A and α2α) induced gain-of-function effects on channel gating that mirrored those reported for pathogenic CACNA1A mutations linked to FHM and ataxia. Unoccupied N-glycosylation site N283 at α1A contributes to a gain-of-function by lessening CaV2.1 inactivation. Hypoglycosylation of the α2δ subunit also participates in the gain-of-function effect by promoting voltage-dependent opening of the CaV2.1 channel. CaV2.1 hypoglycosylation may cause ataxia and SLEs in PMM2-CDG patients. Aberrant CaV2.1 N-glycosylation as a novel pathomechanism in PMM2-CDG opens new therapeutic possibilities.


Asunto(s)
Enfermedades Cerebelosas/complicaciones , Canalopatías/complicaciones , Fosfotransferasas (Fosfomutasas)/deficiencia , Accidente Cerebrovascular/complicaciones , Adolescente , Secuencia de Aminoácidos , Canales de Calcio/genética , Enfermedades Cerebelosas/diagnóstico por imagen , Canalopatías/diagnóstico por imagen , Niño , Preescolar , Electroencefalografía , Femenino , Glicosilación , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Imagen por Resonancia Magnética , Masculino , Mutación/genética , Fosfotransferasas (Fosfomutasas)/química , Fosfotransferasas (Fosfomutasas)/metabolismo , Accidente Cerebrovascular/diagnóstico por imagen , Tunicamicina/farmacología
15.
Clin Sci (Lond) ; 131(22): 2707-2719, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28982723

RESUMEN

Abdominal aortic aneurysm (AAA) evolution is unpredictable and no specific treatment exists for AAA, except surgery to prevent aortic rupture. Galectin-3 has been previously associated with CVD, but its potential role in AAA has not been addressed. Galectin-3 levels were increased in the plasma of AAA patients (n=225) compared with the control group (n=100). In addition, galectin-3 concentrations were associated with the need for surgical repair, independently of potential confounding factors. Galectin-3 mRNA and protein expression were increased in human AAA samples compared with healthy aortas. Experimental AAA in mice was induced via aortic elastase perfusion. Mice were treated intravenously with the galectin-3 inhibitor modified citrus pectin (MCP, 10 mg/kg, every other day) or saline. Similar to humans, galectin-3 serum and aortic mRNA levels were also increased in elastase-induced AAA mice compared with control mice. Mice treated with MCP showed decreased aortic dilation, as well as elastin degradation, vascular smooth muscle cell (VSMC) loss, and macrophage content at day 14 postelastase perfusion compared with control mice. The underlying mechanism(s) of the protective effect of MCP was associated with a decrease in galectin-3 and cytokine (mainly CCL5) mRNA and protein expression. Interestingly, galectin-3 induced CCL5 expression by a mechanism involving STAT3 activation in VSMC. Accordingly, MCP treatment decreased STAT3 phosphorylation in elastase-induced AAA. In conclusion, increased galectin-3 levels are associated with AAA progression, while galectin-3 inhibition decreased experimental AAA development. Our data suggest the potential role of galectin-3 as a therapeutic target in AAA.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Aneurisma de la Aorta Abdominal/prevención & control , Galectina 3/antagonistas & inhibidores , Galectina 3/sangre , Elastasa Pancreática , Pectinas/farmacología , Animales , Aorta Abdominal/enzimología , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/sangre , Aneurisma de la Aorta Abdominal/enzimología , Aneurisma de la Aorta Abdominal/patología , Proteínas Sanguíneas , Estudios de Casos y Controles , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Dilatación Patológica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Humanos , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Fosforilación , ARN Mensajero/sangre , ARN Mensajero/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba
16.
J Inherit Metab Dis ; 40(5): 709-713, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28341975

RESUMEN

OBJECTIVE: We aim to delineate the progression of cerebellar atrophy (the primary neuroimaging finding) in children with phosphomannomutase-deficiency (PMM2-CDG) by analyzing longitudinal MRI studies and performing cerebellar volumetric analysis and a 2D cerebellar measurement. METHODS: Statistical analysis was used to compare MRI measurements [midsagittal vermis relative diameter (MVRD) and volume] of children with PMM2-CDG and sex- and age-matched controls, and to determine the rate of progression of cerebellar atrophy at different ages. RESULTS: Fifty MRI studies of 33 PMM2-CDG patients were used for 2D evaluation, and 19 MRI studies were available for volumetric analysis. Results from a linear regression model showed that patients have a significantly lower MVRD and cerebellar volume compared to controls (p < 0.001 and p < 0.001 respectively). There was a significant negative correlation between age and MVRD for patients (p = 0.014). The rate of cerebellar atrophy measured by the loss of MVRD and cerebellar volume per year was higher at early ages (r = -0.578, p = 0.012 and r = -0.323, p = 0.48 respectively), particularly in patients under 11 years (p = 0.004). There was a significant positive correlation between MVRD and cerebellar volume in PMM2-CDG patients (r = 0.669, p = 0.001). CONCLUSIONS: Our study quantifies a progression of cerebellar atrophy in PMM2-CDG patients, particularly during the first decade of life, and suggests a simple and reliable measure, the MVRD, to monitor cerebellar atrophy. Quantitative measurement of MVRD and cerebellar volume are essential for correlation with phenotype and outcome, natural follow-up, and monitoring in view of potential therapies in children with PMM2-CDG.


Asunto(s)
Atrofia/metabolismo , Atrofia/patología , Cerebelo/metabolismo , Cerebelo/patología , Fosfotransferasas (Fosfomutasas)/deficiencia , Fosfotransferasas (Fosfomutasas)/metabolismo , Niño , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino
17.
Mol Med ; 21(1): 817-823, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26552061

RESUMEN

Sporadic inclusion body myositis (sIBM) is a rare disease that is difficult to diagnose. Muscle biopsy provides three prominent pathological findings: inflammation, mitochondrial abnormalities and fibber degeneration, represented by the accumulation of protein depots constituted by ß-amyloid peptide, among others. We aim to perform a screening in plasma of circulating molecules related to the putative etiopathogenesis of sIBM to determine potential surrogate biomarkers for diagnosis. Plasma from 21 sIBM patients and 20 age- and gender-paired healthy controls were collected and stored at -80°C. An additional population of patients with non-sIBM inflammatory myopathies was also included (nine patients with dermatomyositis and five with polymyositis). Circulating levels of inflammatory cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α), mitochondrial-related molecules (free plasmatic mitochondrial DNA [mtDNA], fibroblast growth factor-21 [FGF-21] and coenzyme-Q10 [CoQ]) and amyloidogenic-related molecules (beta-secretase-1 [BACE-1], presenilin-1 [PS-1], and soluble Aß precursor protein [sAPPß]) were assessed with magnetic bead-based assays, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatography (HPLC). Despite remarkable trends toward altered plasmatic expression of inflammatory and mitochondrial molecules (increased IL-6, TNF-α, circulating mtDNA and FGF-21 levels and decreased content in CoQ), only amyloidogenic degenerative markers including BACE-1, PS-1 and sAPPß levels were significantly increased in plasma from sIBM patients compared with controls and other patients with non-sIBM inflammatory myopathies (p < 0.05). Inflammatory, mitochondrial and amyloidogenic degeneration markers are altered in plasma of sIBM patients confirming their etiopathological implication in the disease. Sensitivity and specificity analysis show that BACE-1, PS-1 and sAPPß represent a good predictive noninvasive tool for the diagnosis of sIBM, especially in distinguishing this disease from polymyositis.

19.
BMC Genomics ; 15: 91, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24484525

RESUMEN

BACKGROUND: Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. RESULTS: We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. CONCLUSION: Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required.


Asunto(s)
Perfilación de la Expresión Génica , Factor 15 de Diferenciación de Crecimiento/genética , Miopatías Mitocondriales/genética , Timidina Quinasa/genética , Proteína p53 Supresora de Tumor/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Caspasa 3/metabolismo , Niño , Preescolar , Biología Computacional , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Lactante , Miopatías Mitocondriales/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Transducción de Señal , Timidina Quinasa/metabolismo
20.
J Inherit Metab Dis ; 37(1): 53-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23774949

RESUMEN

Primary coenzyme Q10 (CoQ10) deficiencies are associated with mutations in genes encoding enzymes important for its biosynthesis and patients are responsive to CoQ10 supplementation. Early treatment allows better prognosis of the disease and therefore, early diagnosis is desirable. The complex phenotype and genotype and the frequent secondary CoQ10 deficiencies make it difficult to achieve a definitive diagnosis by direct quantification of CoQ10. We developed a non-radioactive methodology for the quantification of CoQ10 biosynthesis in fibroblasts that allows the identification of primary deficiencies. Fibroblasts were incubated 72 h with 28 µmol/L (2)H3-mevalonate or 1.65 mmol/L (13)C6-p-hydroxybenzoate. The newly synthesized (2)H3- and (13)C6- labelled CoQ10 were analysed by high performance liquid chromatography-tandem mass spectrometry. The mean and the reference range for (13)C6-CoQ10 and (2)H3-CoQ10 biosynthesis were 0.97 (0.83-1.1) and 0.13 (0.09-0.17) nmol/Unit of citrate synthase, respectively. We validated the methodology through the study of one patient with COQ2 mutations and six patients with CoQ10 deficiency secondary to other inborn errors of metabolism. Afterwards we investigated 16 patients' fibroblasts and nine showed decreased CoQ10 biosynthesis. Therefore, the next step is to study the COQ genes in order to reach a definitive diagnosis in these nine patients. In the patients with normal rates the deficiency is probably secondary. In conclusion, we have developed a non-invasive non-radioactive method suitable for the detection of defects in CoQ10 biosynthesis, which offers a good tool for the stratification of patients with these treatable mitochondrial diseases.


Asunto(s)
Ataxia/diagnóstico , Ataxia/metabolismo , Fibroblastos/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Mutación , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Línea Celular , Cromatografía Líquida de Alta Presión , Citrato (si)-Sintasa/metabolismo , Genotipo , Humanos , Técnicas de Diagnóstico Molecular , Fenotipo , Valores de Referencia , Reproducibilidad de los Resultados , Piel/metabolismo , Espectrometría de Masas en Tándem , Factores de Tiempo , Ubiquinona/biosíntesis , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA