Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 608(7923): 540-545, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948640

RESUMEN

The sensitivity of forests to near-term warming and associated precipitation shifts remains uncertain1-9. Herein, using a 5-year open-air experiment in southern boreal forest, we show divergent responses to modest climate alteration among juveniles of nine co-occurring North American tree species. Warming alone (+1.6 °C or +3.1 °C above ambient temperature) or combined with reduced rainfall increased the juvenile mortality of all species, especially boreal conifers. Species differed in growth responses to warming, ranging from enhanced growth in Acer rubrum and Acer saccharum to severe growth reductions in Abies balsamea, Picea glauca and Pinus strobus. Moreover, treatment-induced changes in both photosynthesis and growth help explain treatment-driven changes in survival. Treatments in which species experienced conditions warmer or drier than at their range margins resulted in the most adverse impacts on growth and survival. Species abundant in southern boreal forests had the largest reductions in growth and survival due to climate manipulations. By contrast, temperate species that experienced little mortality and substantial growth enhancement in response to warming are rare throughout southern boreal forest and unlikely to rapidly expand their density and distribution. Therefore, projected climate change will probably cause regeneration failure of currently dominant southern boreal species and, coupled with their slow replacement by temperate species, lead to tree regeneration shortfalls with potential adverse impacts on the health, diversity and ecosystem services of regional forests.


Asunto(s)
Calentamiento Global , Taiga , Árboles , Aclimatación , Biodiversidad , Modelos Climáticos , Calentamiento Global/estadística & datos numéricos , Modelos Biológicos , América del Norte , Fotosíntesis , Lluvia , Temperatura , Árboles/clasificación , Árboles/crecimiento & desarrollo
2.
Proc Natl Acad Sci U S A ; 121(7): e2316164121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315867

RESUMEN

Tree mortality due to global change-including range expansion of invasive pests and pathogens-is a paramount threat to forest ecosystems. Oak forests are among the most prevalent and valuable ecosystems both ecologically and economically in the United States. There is increasing interest in monitoring oak decline and death due to both drought and the oak wilt pathogen (Bretziella fagacearum). We combined anatomical and ecophysiological measurements with spectroscopy at leaf, canopy, and airborne levels to enable differentiation of oak wilt and drought, and detection prior to visible symptom appearance. We performed an outdoor potted experiment with Quercus rubra saplings subjected to drought stress and/or artificially inoculated with the pathogen. Models developed from spectral reflectance accurately predicted ecophysiological indicators of oak wilt and drought decline in both potted and field experiments with naturally grown saplings. Both oak wilt and drought resulted in blocked water transport through xylem conduits. However, oak wilt impaired conduits in localized regions of the xylem due to formation of tyloses instead of emboli. The localized tylose formation resulted in more variable canopy photosynthesis and water content in diseased trees than drought-stressed ones. Reflectance signatures of plant photosynthesis, water content, and cellular damage detected oak wilt and drought 12 d before visual symptoms appeared. Our results show that leaf spectral reflectance models predict ecophysiological processes relevant to detection and differentiation of disease and drought. Coupling spectral models that detect physiological change with spatial information enhances capacity to differentiate plant stress types such as oak wilt and drought.


Asunto(s)
Ecosistema , Quercus , Quercus/fisiología , Sequías , Bosques , Árboles/fisiología , Agua/fisiología
3.
Proc Natl Acad Sci U S A ; 120(34): e2221619120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579148

RESUMEN

The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal-temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksiana and Betula papyrifera) and two temperate (Pinus strobus and Quercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal-temperate ecotone.


Asunto(s)
Micorrizas , Pinus , Ecosistema , Cambio Climático , Bosques , Árboles/fisiología , Pinus/microbiología
4.
Plant Cell Environ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101396

RESUMEN

Photosynthetic acclimation to both warming and elevated CO2 of boreal trees remains a key uncertainty in modelling the response of photosynthesis to future climates. We investigated the impact of increased growth temperature and elevated CO2 on photosynthetic capacity (Vcmax and Jmax) in mature trees of two North American boreal conifers, tamarack and black spruce. We show that Vcmax and Jmax at a standard temperature of 25°C did not change with warming, while Vcmax and Jmax at their thermal optima (Topt) and growth temperature (Tg) increased. Moreover, Vcmax and Jmax at either 25°C, Topt or Tg decreased with elevated CO2. The Jmax/Vcmax ratio decreased with warming when assessed at both Topt and Tg but did not significantly vary at 25°C. The Jmax/Vcmax increased with elevated CO2 at either reference temperature. We found no significant interaction between warming and elevated CO2 on all traits. If this lack of interaction between warming and elevated CO2 on the Vcmax, Jmax and Jmax/Vcmax ratio is a general trend, it would have significant implications for improving photosynthesis representation in vegetation models. However, future research is required to investigate the widespread nature of this response in a larger number of species and biomes.

5.
Nature ; 562(7726): 263-267, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283137

RESUMEN

Climate warming will influence photosynthesis via thermal effects and by altering soil moisture1-11. Both effects may be important for the vast areas of global forests that fluctuate between periods when cool temperatures limit photosynthesis and periods when soil moisture may be limiting to carbon gain4-6,9-11. Here we show that the effects of climate warming flip from positive to negative as southern boreal forests transition from rainy to modestly dry periods during the growing season. In a three-year open-air warming experiment with juveniles of 11 temperate and boreal tree species, an increase of 3.4 °C in temperature increased light-saturated net photosynthesis and leaf diffusive conductance on average on the one-third of days with the wettest soils. In all 11 species, leaf diffusive conductance and, as a result, light-saturated net photosynthesis decreased during dry spells, and did so more sharply in warmed plants than in plants at ambient temperatures. Consequently, across the 11 species, warming reduced light-saturated net photosynthesis on the two-thirds of days with driest soils. Thus, low soil moisture may reduce, or even reverse, the potential benefits of climate warming on photosynthesis in mesic, seasonally cold environments, both during drought and in regularly occurring, modestly dry periods during the growing season.


Asunto(s)
Calentamiento Global , Fotosíntesis , Suelo/química , Árboles/clasificación , Árboles/metabolismo , Agua/análisis , Sequías , Gases/metabolismo , Gases/efectos de la radiación , Humedad , Minnesota , Fotosíntesis/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas/efectos de la radiación , Lluvia , Estaciones del Año , Temperatura , Árboles/efectos de la radiación
6.
Plant Cell Environ ; 46(10): 3102-3119, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36756817

RESUMEN

The linkage of stomatal behaviour with photosynthesis is critical to understanding water and carbon cycles under global change. The relationship of stomatal conductance (gs ) and CO2 assimilation (Anet ) across a range of environmental contexts, as represented in the model parameter (g1 ), has served as a proxy of the marginal water cost of carbon acquisition. We use g1 to assess species differences in stomatal behaviour to a decade of open-air experimental climate change manipulations, asking whether generalisable patterns exist across species and climate contexts. Anet -gs measurements (17 727) for 21 boreal and temperate tree species under ambient and +3.3°C warming, and ambient and ~40% summer rainfall reduction, provided >2700 estimates of g1 . Warming and/or reduced rainfall treatments both lowered g1 because those treatments resulted in lower soil moisture and because stomatal behaviour changed more in warming when soil moisture was low. Species tended to respond similarly, although, in species from warmer and drier habitats, g1 tended to be slightly higher and to be the least sensitive to the decrease in soil water. Overall, both warming and rainfall reduction consistently made stomatal behaviour more conservative in terms of water loss per unit carbon gain across 21 species and a decade of experimental observation.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Agua , Ecosistema , Fotosíntesis , Suelo
7.
Proc Natl Acad Sci U S A ; 117(19): 10397-10405, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32341148

RESUMEN

Changes in plant phenology associated with climate change have been observed globally. What is poorly known is whether and how phenological responses to climate warming will differ from year to year, season to season, habitat to habitat, or species to species. Here, we present 5 y of phenological responses to experimental warming for 10 subboreal tree species. Research took place in the open-air B4WarmED experiment in Minnesota. The design is a two habitat (understory and open) × three warming treatments (ambient, +1.7 °C, +3.4 °C) factorial at two sites. Phenology was measured twice weekly during the growing seasons of 2009 through 2013. We found significant interannual variation in the effect of warming and differences among species in response to warming that relate to geographic origin and plant functional group. Moreover, responses to experimental temperature variation were similar to responses to natural temperature variation. Warming advanced the date of budburst more in early compared to late springs, suggesting that to simulate interannual variability in climate sensitivity of phenology, models should employ process-based or continuous development approaches. Differences among species in timing of budburst were also greater in early compared to late springs. Our results suggest that climate change-which will make most springs relatively "early"-could lead to a future with more variable phenology among years and among species, with consequences including greater risk of inappropriately early leafing and altered interactions among species.

8.
Nature ; 531(7596): 633-6, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-26982730

RESUMEN

Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.


Asunto(s)
Aclimatación , Ecosistema , Calentamiento Global , Temperatura , Árboles/metabolismo , Atmósfera , Dióxido de Carbono/metabolismo , Respiración de la Célula , Oscuridad , Bosques , América del Norte , Fotosíntesis , Hojas de la Planta/metabolismo , Estaciones del Año , Factores de Tiempo , Árboles/clasificación
9.
Ecol Lett ; 24(5): 1007-1017, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33694319

RESUMEN

Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi-decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54-year fire frequency experiment in a temperate oak savanna-forest ecotone that experienced a recent outbreak of oak wilt. Different fire regimes determined whether plots were savanna or forest by regulating tree abundance (r2  = 0.70), but disease rapidly reversed the effect of fire exclusion, increasing mortality by 765% in unburned forests, but causing relatively minor changes in frequently burned savannas. Model simulations demonstrated that disease caused unburned forests to transition towards a unique woodland that was prone to transition to savanna if fire was reintroduced. Consequently, disease-fire interactions could shift ecosystem resilience and biome boundaries as pathogen distributions change.


Asunto(s)
Ecosistema , Incendios , Bosques , Pradera , Árboles
10.
Glob Chang Biol ; 27(12): 2945-2958, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33742753

RESUMEN

Plants often adjust their leaf mitochondrial ("dark") respiration (Rd ) measured at a standardized temperature such as 20°C (R20 ) downward after experiencing warmer temperatures and upward after experiencing cooler temperatures. These responses may help leaves maintain advantageous photosynthetic capacity and/or be a response to recent photosynthate accumulation, and can occur within days after a change in thermal regime. It is not clear, however, how the sensitivity and magnitude of this response change over time, or which time period prior to a given measurement best predicts R20 . Nor is it known whether nighttime, daytime, or 24-hour temperatures should be most influential. To address these issues, we used data from 1620 Rd temperature response curves of 10 temperate and boreal tree species in a long-term field experiment in Minnesota, USA to assess how the observed nearly complete acclimation of R20 was related to past temperatures during periods of differing lengths. We hypothesized that R20 would be best related to prior midday temperatures associated with both photosynthetic biochemistry and peak carbon uptake rates that drive carbohydrate accumulation. Inconsistent with this hypothesis, prior night temperatures were the best predictors of R20 for all species. We had also hypothesized that recent (prior 3-10 days) temperatures should best predict R20 because they likely have stronger residual impacts on leaf-level physiology than periods extending further back in time, whereas a prior 1- to 2-day period might be a span shorter than one to which photosynthetic capacity and Rd adjust. There was little to no support for this idea, as for angiosperms, long time windows (prior 30-60 nights) were the best predictors, while for gymnosperms both near-term (prior 3-8 nights for pines, prior 10-14 nights for spruce/fir) and longer-term periods (prior 45 nights) were the best predictors. The importance of nighttime temperatures, the relatively long "time-averaging" that best explained acclimation, and dual peaks of temporal acclimation responsiveness in some species were all results that were unanticipated.


Asunto(s)
Aclimatación , Hojas de la Planta , Minnesota , Fotosíntesis , Respiración , Temperatura
11.
Ann Bot ; 127(2): 203-211, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32853366

RESUMEN

BACKGROUND AND AIMS: Warmer temperatures and altered precipitation patterns are expected to continue to occur as the climate changes. How these changes will impact the flowering phenology of herbaceous perennials in northern forests is poorly understood but could have consequences for forest functioning and species interactions. Here, we examine the flowering phenology responses of five herbaceous perennials to experimental warming and reduced summer rainfall over 3 years. METHODS: This study is part of the B4WarmED experiment located at two sites in northern Minnesota, USA. Three levels of warming (ambient, +1.6 °C and +3.1 °C) were crossed with two rainfall manipulations (ambient and 27 % reduced growing season rainfall). KEY RESULTS: We observed species-specific responses to the experimental treatments. Warming alone advanced flowering for four species. Most notably, the two autumn blooming species showed the strongest advance of flowering to warming. Reduced rainfall alone advanced flowering for one autumn blooming species and delayed flowering for the other, with no significant impact on the three early blooming species. Only one species, Solidago spp., showed an interactive response to warming and rainfall manipulation by advancing in +1.6 °C warming (regardless of rainfall manipulation) but not advancing in the warmest, driest treatment. Species-specific responses led to changes in temporal overlap between species. Most notably, the two autumn blooming species diverged significantly in their flowering timing. In ambient conditions, these two species flowered within the same week. In the warmest, driest treatment, flowering occurred over a month apart. CONCLUSIONS: Herbaceous species may differ in how they respond to future climate conditions. Changes to phenology may lead to fewer resources for insects or a mismatch between plants and pollinators.


Asunto(s)
Sequías , Taiga , Cambio Climático , Plantas , Estaciones del Año , Temperatura
12.
Glob Chang Biol ; 26(2): 746-759, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31437334

RESUMEN

Photosynthetic biochemical limitation parameters (i.e., Vcmax , Jmax and Jmax :Vcmax ratio) are sensitive to temperature and water availability, but whether these parameters in cold climate species at biome ecotones are positively or negatively influenced by projected changes in global temperature and water availability remains uncertain. Prior exploration of this question has largely involved greenhouse based short-term manipulative studies with mixed results in terms of direction and magnitude of responses. To address this question in a more realistic context, we examined the effects of increased temperature and rainfall reduction on the biochemical limitations of photosynthesis using a long-term chamber-less manipulative experiment located in northern Minnesota, USA. Nine tree species from the boreal-temperate ecotone were grown in natural neighborhoods under ambient and elevated (+3.4°C) growing season temperatures and ambient or reduced (≈40% of rainfall removed) summer rainfall. Apparent rubisco carboxylation and RuBP regeneration standardized to 25°C (Vcmax25°C and Jmax25°C , respectively) were estimated based on ACi curves measured in situ over three growing seasons. Our primary objective was to test whether species would downregulate Vcmax25°C and Jmax25°C in response to warming and reduced rainfall, with such responses expected to be greatest in species with the coldest and most humid native ranges, respectively. These hypotheses were not supported, as there were no overall main treatment effects on Vcmax25°C or Jmax25°C (p > .14). However, Jmax :Vcmax ratio decreased significantly with warming (p = .0178), whereas interactions between warming and rainfall reduction on the Jmax25°C to Vcmax25°C ratio were not significant. The insensitivity of photosynthetic parameters to warming contrasts with many prior studies done under larger temperature differentials and often fixed daytime temperatures. In sum, plants growing in relatively realistic conditions under naturally varying temperatures and soil moisture levels were remarkably insensitive in terms of their Jmax25°C and Vcmax25°C when grown at elevated temperatures, reduced rainfall, or both combined.


Asunto(s)
Fotosíntesis , Árboles , Dióxido de Carbono , Minnesota , Hojas de la Planta , Estaciones del Año , Taiga , Temperatura
13.
Glob Chang Biol ; 25(1): 93-107, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295397

RESUMEN

Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long-term changes in regional NDVI. In an effort to examine the underlying ecological drivers of these changes, we used field-scale remote sensing of NDVI to track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2 ) levels. In addition to NDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient-poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found that NDVI decreased with long-term reductions in soil moisture at the APEX site, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasing NDVI with elevated temperature at the SPRUCE site, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at the SPRUCE site also led to increases in the LAI of the shrub layer. We found no strong effects of elevated CO2 on community composition. Our findings support recent studies suggesting that changes in NDVI observed from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming.


Asunto(s)
Biodiversidad , Dióxido de Carbono/análisis , Cambio Climático , Suelo/química , Alaska , Regiones Árticas , Dióxido de Carbono/metabolismo , Monitoreo del Ambiente , Hidrología , Minnesota , Plantas/clasificación , Plantas/metabolismo
14.
Am J Bot ; 105(5): 851-861, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874393

RESUMEN

PREMISE OF THE STUDY: Changes to plant phenology have been linked to warmer temperatures caused by climate change. Despite the importance of the groundlayer to community and forest dynamics, few warming experiments have focused on herbaceous plant and shrub phenology. METHODS: Using a field study in Minnesota, United States, we investigated phenological responses of 16 species to warming over five growing seasons (2009-2013) at two sites, under two canopy covers, and in three levels of simultaneous above- and belowground warming: ambient temperature, ambient +1.7°C and ambient +3.4°C. We tested whether warming led to earlier phenology throughout the growing season and whether responses varied among species and years and depended on canopy cover. KEY RESULTS: Warming extended the growing season between 11-30 days, primarily through earlier leaf unfolding. Leaf senescence was delayed for about half of the species. Warming advanced flowering across species, especially those flowering in August, with modest impacts on fruit maturation for two species. Importantly, warming caused more than half of the species to either converge or diverge phenologically in relation to each other, suggesting that future warmed climate conditions will alter phenological relationships of the groundlayer. Warm springs elicited a stronger advance of leaf unfolding compared to cool spring years. Several species advanced leaf unfolding (in response to warming) more in the closed canopy compared to the open. CONCLUSIONS: Climate warming will extend the growing season of groundlayer species in the boreal-temperate forest ecotone and alter the synchrony of their phenology.


Asunto(s)
Calentamiento Global , Magnoliopsida/crecimiento & desarrollo , Taiga , Pteridium/crecimiento & desarrollo , Estaciones del Año , Luz Solar
15.
Ecol Lett ; 20(4): 505-512, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28295970

RESUMEN

Plant diversity experiments generally find that increased diversity causes increased productivity; however, primary productivity is typically measured in the presence of a diverse food web, including pathogens, mutualists and herbivores. If food web impacts on productivity vary with plant diversity, as predicted by both theoretical and empirical studies, estimates of the effect of plant diversity on productivity may be biased. We experimentally removed arthropods, foliar fungi and soil fungi from the longest-running plant diversity experiment. We found that fungi and arthropods removed a constant, large proportion of biomass leading to a greater reduction of total biomass in high diversity plots. As a result, the effect of diversity on measured plant productivity was much higher in the absence of fungi and arthropods. Thus, diversity increases productivity more than reported in previous studies that did not control for the effects of heterotrophic consumption.


Asunto(s)
Artrópodos/fisiología , Biodiversidad , Cadena Alimentaria , Hongos/fisiología , Fenómenos Fisiológicos de las Plantas , Animales , Herbivoria , Plantas/microbiología
16.
Ecology ; 98(10): 2601-2614, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28727905

RESUMEN

Over the last two decades, empirical work has established that higher biodiversity can lead to greater primary productivity; however, the importance of different aspects of biodiversity in contributing to such relationships is rarely elucidated. We assessed the relative importance of species richness, phylogenetic diversity, functional diversity, and identity of neighbors for stem growth 3 yr after seedling establishment in a tree diversity experiment in eastern Minnesota. Generally, we found that community-weighted means of key functional traits (including mycorrhizal association, leaf nitrogen and calcium, and waterlogging tolerance) as well as species richness were strong, independent predictors of stem biomass growth. More phylogenetically diverse communities did not consistently produce more biomass than expected, and the trait values or diversity of individual functional traits better predicted biomass production than did a multidimensional functional diversity metric. Furthermore, functional traits and species richness best predicted growth at the whole-plot level (12 m2 ), whereas neighborhood composition best predicted growth at the focal tree level (0.25 m2 ). The observed effects of biodiversity on growth appear strongly driven by positive complementary effects rather than by species-specific selection effects, suggesting that synergistic species' interactions rather than the influence of a few important species may drive overyielding.


Asunto(s)
Biodiversidad , Árboles/clasificación , Biomasa , Ecosistema , Minnesota , Filogenia , Árboles/crecimiento & desarrollo
17.
Glob Chang Biol ; 23(4): 1598-1609, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27658686

RESUMEN

Rising temperatures associated with climate change have been shown to negatively affect the photosynthetic rates of boreal forest tree saplings at their southern range limits. To quantify the responses of ectomycorrhizal (EM) fungal communities associated with poorly performing hosts, we sampled the roots of Betula papyrifera and Abies balsamea saplings growing in the B4Warmed (Boreal Forest Warming at an Ecotone in Danger) experiment. EM fungi on the root systems of both hosts were compared from ambient and +3.4 °C air and soil warmed plots at two sites in northern Minnesota. EM fungal communities were assessed with high-throughput sequencing along with measures of plant photosynthesis, soil temperature, moisture, and nitrogen. Warming selectively altered EM fungal community composition at both the phylum and genus levels, but had no significant effect on EM fungal operational taxonomic unit (OTU) diversity. Notably, warming strongly favored EM Ascomycetes and EM fungi with short-contact hyphal exploration types. Declining host photosynthetic rates were also significantly inversely correlated with EM Ascomycete and EM short-contact exploration type abundance, which may reflect a shift to less carbon demanding fungi due to lower photosynthetic capacity. Given the variation in EM host responses to warming, both within and between ecosystems, better understanding the link between host performance and EM fungal community structure will to clarify how climate change effects cascade belowground.


Asunto(s)
Cambio Climático , Microbiología del Suelo , Abies , Betula , Ecosistema , Bosques , Micorrizas , Taiga , Árboles
18.
Glob Chang Biol ; 22(12): 4124-4133, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27122300

RESUMEN

Global temperatures (T) are rising, and for many plant species, their physiological response to this change has not been well characterized. In particular, how hydraulic parameters may change has only been examined experimentally for a few species. To address this, we measured characteristics of the hydraulic architecture of six species growing in ambient T and ambient +3.4 °C T plots in two experimentally warmed forest sites in Minnesota. These sites are at the temperate-boreal ecotone, and we measured three species from each forest type. We hypothesized that relative to boreal species, temperate species near their northern range border would increase xylem conduit diameters when grown under elevated T. We also predicted a continuum of responses among wood types, with conduit diameter increases correlating with increases in the complexity of wood structure. Finally, we predicted that increases in conduit diameter and specific hydraulic conductivity would positively affect photosynthetic rates and growth. Our results generally supported our hypotheses, and conduit diameter increased under elevated T across all species, although this pattern was driven predominantly by three species. Two of these species were temperate angiosperms, but one was a boreal conifer, contrary to predictions. We observed positive relationships between the change in specific hydraulic conductivity and both photosynthetic rate (P = 0.080) and growth (P = 0.012). Our results indicate that species differ in their ability to adjust hydraulically to increases in T. Specifically, species with more complex xylem anatomy, particularly those individuals growing near the cooler edge of their range, appeared to be better able to increase conduit diameters and specific hydraulic conductivity, which permitted increases in photosynthesis and growth. Our data support results that indicate individual's ability to physiologically adjust is related to their location within their species range, and highlight that some wood types may adjust more easily than others.


Asunto(s)
Cambio Climático , Bosques , Fotosíntesis , Temperatura , Árboles/fisiología , Minnesota , Agua , Madera/fisiología , Xilema/anatomía & histología
19.
New Phytol ; 207(1): 43-58, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25858142

RESUMEN

Leaf hydraulic conductance (Kleaf ) quantifies the capacity of a leaf to transport liquid water and is a major constraint on light-saturated stomatal conductance (gs ) and photosynthetic rate (Amax ). Few studies have tested the plasticity of Kleaf and anatomy across growth light environments. These provided conflicting results. The Hawaiian lobeliads are an excellent system to examine plasticity, given the striking diversity in the light regimes they occupy, and their correspondingly wide range of Amax , allowing maximal carbon gain for success in given environments. We measured Kleaf , Amax , gs and leaf anatomical and structural traits, focusing on six species of lobeliads grown in a common garden under two irradiances (300/800 µmol photons m(-2)  s(-1) ). We tested hypotheses for light-induced plasticity in each trait based on expectations from optimality. Kleaf , Amax , and gs differed strongly among species. Sun/shade plasticity was observed in Kleaf , Amax, and numerous traits relating to lamina and xylem anatomy, venation, and composition, but gs was not plastic with growth irradiance. Species native to higher irradiance showed greater hydraulic plasticity. Our results demonstrate that a wide set of leaf hydraulic, stomatal, photosynthetic, anatomical, and structural traits tend to shift together during plasticity and adaptation to diverse light regimes, optimizing performance from low to high irradiance.


Asunto(s)
Campanulaceae/fisiología , Fenómenos Ecológicos y Ambientales , Gases/metabolismo , Luz , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de la radiación , Haz Vascular de Plantas/fisiología , Biodiversidad , Campanulaceae/crecimiento & desarrollo , Campanulaceae/efectos de la radiación , Geografía , Hojas de la Planta/fisiología , Haz Vascular de Plantas/efectos de la radiación , Carácter Cuantitativo Heredable , Lluvia , Especificidad de la Especie , Agua
20.
Plant Cell Environ ; 38(9): 1725-36, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25142260

RESUMEN

Increasing temperatures should facilitate the poleward movement of species distributions through a variety of processes, including increasing the growing season length. However, in temperate and boreal latitudes, temperature is not the only cue used by trees to determine seasonality, as changes in photoperiod provide a more consistent, reliable annual signal of seasonality than temperature. Here, we discuss how day length may limit the ability of tree species to respond to climate warming in situ, focusing on the implications of photoperiodic sensing for extending the growing season and affecting plant phenology and growth, as well as the potential role of photoperiod in controlling carbon uptake and water fluxes in forests. We also review whether there are patterns across plant functional types (based on successional strategy, xylem anatomy and leaf morphology) in their sensitivity to photoperiod that we can use to predict which species or groups might be more successful in migrating as the climate warms, or may be more successfully used for forestry and agriculture through assisted migration schemes.


Asunto(s)
Fotoperiodo , Árboles/fisiología , Carbono/metabolismo , Clima , Bosques , Calentamiento Global , Especificidad de la Especie , Árboles/crecimiento & desarrollo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA