Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373258

RESUMEN

Mitochondrial RNA editing in trypanosomes represents an attractive target for developing safer and more efficient drugs for treating infections with trypanosomes because this RNA editing pathway is not found in humans. Other workers have targeted several enzymes in this editing system, but not the RNA. Here, we target a universal domain of the RNA editing substrate, which is the U-helix formed between the oligo-U tail of the guide RNA and the target mRNA. We selected a part of the U-helix that is rich in G-U wobble base pairs as the target site for the virtual screening of 262,000 compounds. After chemoinformatic filtering of the top 5000 leads, we subjected 50 representative complexes to 50 nanoseconds of molecular dynamics simulations. We identified 15 compounds that retained stable interactions in the deep groove of the U-helix. The microscale thermophoresis binding experiments on these five compounds show low-micromolar to nanomolar binding affinities. The UV melting studies show an increase in the melting temperatures of the U-helix upon binding by each compound. These five compounds can serve as leads for drug development and as research tools to probe the role of the RNA structure in trypanosomal RNA editing.


Asunto(s)
Edición de ARN , Bibliotecas de Moléculas Pequeñas , Tripanocidas , Trypanosoma , Trypanosoma/efectos de los fármacos , Edición de ARN/efectos de los fármacos , ARN Protozoario/química , ARN Mitocondrial/química , Tripanocidas/química , Tripanocidas/farmacología , Conformación de Ácido Nucleico/efectos de los fármacos , Simulación de Dinámica Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Int J Mol Sci ; 22(15)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34360698

RESUMEN

Smoking-cessation drugs bind many off-target nicotinic acetylcholine receptors (nAChRs) and cause severe side effects if they are based on nicotine. New drugs that bind only those receptors, such as α6ß2* nAChR, implicated in nicotine addiction would avoid the off-target binding. Indolizidine (-)-237D (IND (-)-237D), a bicyclic alkaloid, has been shown to block α6ß2* containing nAChRs and functionally inhibit the nicotine-evoked dopamine release. To improve the affinity of indolizidine (-)-237D for α6ß2*, we built a library of 2226 analogs. We screened virtually the library against a homology model of α6ß2 nAChR that we derived from the recent crystal structure of α4ß2 nAChR. We also screened the crystal structure of α4ß2 nAChR as a control on specificity. We ranked the compounds based on their predicted free energy of binding. We selected the top eight compounds bound in their best pose and subjected the complexes to 100 ns molecular dynamics simulations to assess the stability of the complexes. All eight analogs formed stable complexes for the duration of the simulations. The results from this work highlight nine distinct analogs of IND (-)-237D with high affinity towards α6ß2* nAChR. These leads can be synthesized and tested in in vitro and in vivo studies as lead candidates for drugs to treat nicotine addiction.


Asunto(s)
Descubrimiento de Drogas , Indolicidinas/química , Simulación de Dinámica Molecular , Receptores Nicotínicos/química , Humanos , Antagonistas Nicotínicos/química , Unión Proteica , Receptores Nicotínicos/metabolismo , Cese del Hábito de Fumar
3.
Comput Sci Eng ; 23(2): 47-53, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967632

RESUMEN

Snippets - code templates one line or longer - boost researcher productivity because they are faster to insert than writing the code from scratch and because they reduce debugging time. Several extensions support the use of snippets in Jupyter. We developed a Python version of the pymolsnips library and customized it for use in the jupyterlab-snippets-multimenus extension for JupyterLab. The extension provides access to the snippets by pull-down menus. Each snippet performs one task. Each task often requires many lines of code. This library's availability in Jupyter enables PyMOL users to run PyMOL efficiently inside Jupyter while storing the code and the associated molecular graphics images next to each other in one notebook document. This proximity of code and images supports reproducible research in structural biology, and the use of one computer file facilitates collaborations.

4.
J Biol Chem ; 294(27): 10428-10437, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118272

RESUMEN

RET is a transmembrane growth factor receptor. Aberrantly activated RET is found in several types of human cancer and is a target for treating RET aberration-associated cancer. Multiple clinically relevant RET protein-tyrosine kinase inhibitors (TKIs) have been identified, but how TKIs bind to RET is unknown except for vandetanib. Nintedanib is a RET TKI that inhibits the vandetanib-resistant RET(G810A) mutant. Here, we determined the X-ray co-crystal structure of RET kinase domain-nintedanib complex to 1.87 Å resolution and a RET(G810A) kinase domain crystal structure to 1.99 Å resolution. We also identified a vandetanib-resistant RET(L881V) mutation previously found in familial medullary thyroid carcinoma. Drug-sensitivity profiling of RET(L881V) revealed that it remains sensitive to nintedanib. The RET-nintedanib co-crystal structure disclosed that Leu-730 in RET engages in hydrophobic interactions with the piperazine, anilino, and phenyl groups of nintedanib, providing a structural basis for explaining that the p.L730V mutation identified in nine independently isolated cell lines resistant to nintedanib. Comparisons of RET-nintedanib, RET(G810A), and RET-vandetanib crystal structures suggested that the solvent-front Ala-810 makes hydrophobic contacts with a methyl group and aniline in nintedanib and blocks water access to two oxygen atoms of vandetanib, resulting in an energetic penalty for burying polar groups. Of note, even though the p.L881V mutation did not affect sensitivity to nintedanib, RET(L881V) was resistant to nintedanib analogs lacking a phenyl group. These results provide structural insights into resistance of RET mutants against the TKIs nintedanib and vandetanib.


Asunto(s)
Indoles/química , Piperidinas/química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-ret/química , Quinazolinas/química , Animales , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Resistencia a Antineoplásicos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/metabolismo , Ratones , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Piperidinas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Quinazolinas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Cell Commun Signal ; 18(1): 130, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32819370

RESUMEN

BACKGROUND: Exosomes are extracellular vesicles containing a variety of biological molecules including microRNAs (miRNAs). We have recently demonstrated that certain miRNA species are selectively and highly enriched in pancreatic cancer exosomes with miR-1246 being the most abundant. Exosome miRNAs have been shown to mediate intercellular communication in the tumor microenvironment and promote cancer progression. Therefore, understanding how exosomes selectively enrich specific miRNAs to initiate exosome miRNA signaling in cancer cells is critical to advancing cancer exosome biology. RESULTS: The aim of this study was to identify RNA binding proteins responsible for selective enrichment of exosome miRNAs in cancer cells. A biotin-labeled miR-1246 probe was used to capture RNA binding proteins (RBPs) from PANC-1 cells. Among the RBPs identified through proteomic analysis, SRSF1, EIF3B and TIA1 were highly associated with the miR-1246 probe. RNA immunoprecipitation (RIP) and electrophoretic mobility shift assay (EMSA) confirmed the binding of SRSF1 to miR-1246. Lentivirus shRNA knockdown of SRSF1 in pancreatic cancer cells selectively reduced exosome miRNA enrichment whereas GFP-SRSF1 overexpression enhanced the enrichment as analyzed by next generation small RNA sequencing and qRT-PCR. miRNA sequence motif analysis identified a common motif shared by 36/45 of SRSF1-associated exosome miRNAs. EMSA confirmed that shared motif decoys inhibit the binding of SRSF1 to the miR-1246 sequence. CONCLUSIONS: We conclude that SRSF1 mediates selective exosome miRNA enrichment in pancreatic cancer cells by binding to a commonly shared miRNA sequence motif. Video Abstract.


Asunto(s)
Exosomas/genética , MicroARNs/metabolismo , Neoplasias/genética , Factores de Empalme Serina-Arginina/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Exosomas/metabolismo , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Motivos de Nucleótidos/genética , Unión Proteica , Reproducibilidad de los Resultados
6.
J Biol Chem ; 291(11): 5753-5764, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26769962

RESUMEN

Mitochondrial mRNAs in Trypanosoma brucei undergo extensive insertion and deletion of uridylates that are catalyzed by the RNA editing core complex (RECC) and directed by hundreds of small guide RNAs (gRNAs) that base pair with mRNA. RECC is largely RNA-free, and accessory mitochondrial RNA-binding complex 1 (MRB1) variants serve as scaffolds for the assembly of mRNA-gRNA hybrids and RECC. However, the molecular steps that create higher-order holoenzymes ("editosomes") are unknown. Previously, we identified an RNA editing helicase 2-associated subcomplex (REH2C) and showed that REH2 binds RNA. Here we showed that REH2C is an mRNA-associated ribonucleoprotein (mRNP) subcomplex with editing substrates, intermediates, and products. We isolated this mRNP from mitochondria lacking gRNA-bound RNP (gRNP) subcomplexes and identified REH2-associated cofactors 1 and 2 ((H2)F1 and (H2)F2). (H2)F1 is an octa-zinc finger protein required for mRNP-gRNP docking, pre-mRNA and RECC loading, and RNP formation with a short synthetic RNA duplex. REH2 and other eukaryotic DEAH/RHA-type helicases share a conserved regulatory C-terminal domain cluster that includes an oligonucleotide-binding fold. Recombinant REH2 and (H2)F1 constructs associate in a purified complex in vitro. We propose a model of stepwise editosome assembly that entails controlled docking of mRNP and gRNP modules via specific base pairing between their respective mRNA and gRNA cargo and regulatory REH2 and (H2)F1 subunits of the novel mRNP that may control specificity checkpoints in the editing pathway.


Asunto(s)
Proteínas Protozoarias/metabolismo , Edición de ARN , ARN Helicasas/metabolismo , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Emparejamiento Base , Bovinos , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , ARN Helicasas/química , ARN Guía de Kinetoplastida/química , ARN Mensajero/química , Ribonucleoproteínas/química , Trypanosoma brucei brucei/química , Tripanosomiasis Bovina/microbiología
7.
J Biol Chem ; 290(28): 17576-86, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26013825

RESUMEN

γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.


Asunto(s)
gamma-Glutamiltransferasa/química , Aminobutiratos/química , Aminobutiratos/farmacología , Apoenzimas/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Organofosfonatos/química , Organofosfonatos/farmacología , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , gamma-Glutamiltransferasa/antagonistas & inhibidores , gamma-Glutamiltransferasa/genética
8.
RNA ; 20(7): 1142-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24865612

RESUMEN

Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3'-to-5' in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3' ends and strain-specific alternative 3' editing within 3' UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs.


Asunto(s)
Kinetoplastida , Edición de ARN , ARN Guía de Kinetoplastida , ARN Protozoario/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Composición de Base , Secuencia de Bases , Células Cultivadas , Kinetoplastida/genética , Kinetoplastida/metabolismo , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN/química , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Protozoario/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
9.
J Biol Chem ; 289(17): 11873-11896, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24616095

RESUMEN

Bcl-XL binds to Bax, inhibiting Bax oligomerization required for mitochondrial outer membrane permeabilization (MOMP) during apoptosis. How Bcl-XL binds to Bax in the membrane is not known. Here, we investigated the structural organization of Bcl-XL·Bax complexes formed in the MOM, including the binding interface and membrane topology, using site-specific cross-linking, compartment-specific labeling, and computational modeling. We found that one heterodimer interface is formed by a specific interaction between the Bcl-2 homology 1-3 (BH1-3) groove of Bcl-XL and the BH3 helix of Bax, as defined previously by the crystal structure of a truncated Bcl-XL protein and a Bax BH3 peptide (Protein Data Bank entry 3PL7). We also discovered a novel interface in the heterodimer formed by equivalent interactions between the helix 1 regions of Bcl-XL and Bax when their helical axes are oriented either in parallel or antiparallel. The two interfaces are located on the cytosolic side of the MOM, whereas helix 9 of Bcl-XL is embedded in the membrane together with helices 5, 6, and 9 of Bax. Formation of the helix 1·helix 1 interface partially depends on the formation of the groove·BH3 interface because point mutations in the latter interface and the addition of ABT-737, a groove-binding BH3 mimetic, blocked the formation of both interfaces. The mutations and ABT-737 also prevented Bcl-XL from inhibiting Bax oligomerization and subsequent MOMP, suggesting that the structural organization in which interactions at both interfaces contribute to the overall stability and functionality of the complex represents antiapoptotic Bcl-XL·Bax complexes in the MOM.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Permeabilidad , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteína X Asociada a bcl-2/química , Proteína bcl-X/química
10.
Biochemistry ; 53(10): 1657-69, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24506136

RESUMEN

In the social amoeba Dictyostelium, Skp1 is hydroxylated on proline 143 and further modified by three cytosolic glycosyltransferases to yield an O-linked pentasaccharide that contributes to O2 regulation of development. Skp1 is an adapter in the Skp1/cullin1/F-box protein family of E3 ubiquitin ligases that targets specific proteins for polyubiquitination and subsequent proteasomal degradation. To investigate the biochemical consequences of glycosylation, untagged full-length Skp1 and several of its posttranslationally modified isoforms were expressed and purified to near homogeneity using recombinant and in vitro strategies. Interaction studies with the soluble mammalian F-box protein Fbs1/Fbg1/OCP1 revealed preferential binding to the glycosylated isoforms of Skp1. This difference correlated with the increased α-helical and decreased ß-sheet content of glycosylated Skp1s based on circular dichroism and increased folding order based on small-angle X-ray scattering. A comparison of the molecular envelopes of fully glycosylated Skp1 and the apoprotein indicated that both isoforms exist as an antiparallel dimer that is more compact and extended in the glycosylated state. Analytical gel filtration and chemical cross-linking studies showed a growing tendency of less modified isoforms to dimerize. Considering that regions of free Skp1 are intrinsically disordered and Skp1 can adopt distinct folds when bound to F-box proteins, we propose that glycosylation, which occurs adjacent to the F-box binding site, influences the spectrum of energetically similar conformations that vary inversely in their propensity to dock with Fbs1 or another Skp1. Glycosylation may thus influence Skp1 function by modulating F-box protein binding in cells.


Asunto(s)
Dictyostelium/enzimología , Proteínas F-Box/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Dictyostelium/química , Dictyostelium/genética , Proteínas F-Box/química , Proteínas F-Box/genética , Glicosilación , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Ligasas SKP Cullina F-box/genética
11.
J Biol Chem ; 288(44): 31902-13, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24047895

RESUMEN

The enzyme γ-glutamyltranspeptidase 1 (GGT1) is a conserved member of the N-terminal nucleophile hydrolase family that cleaves the γ-glutamyl bond of glutathione and other γ-glutamyl compounds. In animals, GGT1 is expressed on the surface of the cell and has critical roles in maintaining cysteine levels in the body and regulating intracellular redox status. Expression of GGT1 has been implicated as a potentiator of asthma, cardiovascular disease, and cancer. The rational design of effective inhibitors of human GGT1 (hGGT1) has been delayed by the lack of a reliable structural model. The available crystal structures of several bacterial GGTs have been of limited use due to differences in the catalytic behavior of bacterial and mammalian GGTs. We report the high resolution (1.67 Å) crystal structure of glutamate-bound hGGT1, the first of any eukaryotic GGT. Comparisons of the active site architecture of hGGT1 with those of its bacterial orthologs highlight key differences in the residues responsible for substrate binding, including a bimodal switch in the orientation of the catalytic nucleophile (Thr-381) that is unique to the human enzyme. Compared with several bacterial counterparts, the lid loop in the crystal structure of hGGT1 adopts an open conformation that allows greater access to the active site. The hGGT1 structure also revealed tightly bound chlorides near the catalytic residue that may contribute to catalytic activity. These are absent in the bacterial GGTs. These differences between bacterial and mammalian GGTs and the new structural data will accelerate the development of new therapies for GGT1-dependent diseases.


Asunto(s)
Ácido Glutámico/química , gamma-Glutamiltransferasa/química , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Estructura Secundaria de Proteína , Relación Estructura-Actividad , gamma-Glutamiltransferasa/genética
12.
Protein Sci ; 33(4): e4946, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501481

RESUMEN

The two major challenges in synchrotron size-exclusion chromatography coupled in-line with small-angle x-ray scattering (SEC-SAXS) experiments are the overlapping peaks in the elution profile and the fouling of radiation-damaged materials on the walls of the sample cell. In recent years, many post-experimental analyses techniques have been developed and applied to extract scattering profiles from these problematic SEC-SAXS data. Here, we present three modes of data collection at the BioSAXS Beamline 4-2 of the Stanford Synchrotron Radiation Lightsource (SSRL BL4-2). The first mode, the High-Resolution mode, enables SEC-SAXS data collection with excellent sample separation and virtually no additional peak broadening from the UHPLC UV detector to the x-ray position by taking advantage of the low system dispersion of the UHPLC. The small bed volume of the analytical SEC column minimizes sample dilution in the column and facilitates data collection at higher sample concentrations with excellent sample economy equal to or even less than that of the conventional equilibrium SAXS method. Radiation damage problems during SEC-SAXS data collection are evaded by additional cleaning of the sample cell after buffer data collection and avoidance of unnecessary exposures through the use of the x-ray shutter control options, allowing sample data collection with a clean sample cell. Therefore, accurate background subtraction can be performed at a level equivalent to the conventional equilibrium SAXS method without requiring baseline correction, thereby leading to more reliable downstream structural analysis and quicker access to new science. The two other data collection modes, the High-Throughput mode and the Co-Flow mode, add agility to the planning and execution of experiments to efficiently achieve the user's scientific objectives at the SSRL BL4-2.


Asunto(s)
Sincrotrones , Difracción de Rayos X , Dispersión del Ángulo Pequeño , Cromatografía en Gel
13.
RNA ; 17(10): 1870-83, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21878548

RESUMEN

Guide RNAs bind antiparallel to their target pre-mRNAs to form editing substrates in reaction cycles that insert or delete uridylates (Us) in most mitochondrial transcripts of trypanosomes. The 5' end of each guide RNA has an anchor sequence that binds to the pre-mRNA by base-pair complementarity. The template sequence in the middle of the guide RNA directs the editing reactions. The 3' ends of most guide RNAs have ∼15 contiguous Us that bind to the purine-rich unedited pre-mRNA upstream of the editing site. The resulting U-helix is rich in G·U wobble base pairs. To gain insights into the structure of the U-helix, we crystallized 8 bp of the U-helix in one editing substrate for the A6 mRNA of Trypanosoma brucei. The fragment provides three samples of the 5'-AGA-3'/5'-UUU-3' base-pair triple. The fusion of two identical U-helices head-to-head promoted crystallization. We obtained X-ray diffraction data with a resolution limit of 1.37 Å. The U-helix had low and high twist angles before and after each G·U wobble base pair; this variation was partly due to shearing of the wobble base pairs as revealed in comparisons with a crystal structure of a 16-nt RNA with all Watson-Crick base pairs. Both crystal structures had wider major grooves at the junction between the poly(U) and polypurine tracts. This junction mimics the junction between the template helix and the U-helix in RNA-editing substrates and may be a site of major groove invasion by RNA editing proteins.


Asunto(s)
Conformación de Ácido Nucleico , Poli U/química , Edición de ARN , Precursores del ARN/química , Trypanosoma/química , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Poli U/metabolismo , Precursores del ARN/metabolismo , Electricidad Estática , Especificidad por Sustrato , Trypanosoma/metabolismo
14.
BMC Struct Biol ; 12: 7, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22559154

RESUMEN

BACKGROUND: Influenza neuraminidase (NA) is an important target for antiviral inhibitors since its active site is highly conserved such that inhibitors can be cross-reactive against multiple types and subtypes of influenza. Here, we discuss the crystal structure of neuraminidase subtype N9 complexed with a new benzoic acid based inhibitor (2) that was designed to add contacts by overpacking one side of the active site pocket. Inhibitor 2 uses benzoic acid to mimic the pyranose ring, a bis-(hydroxymethyl)-substituted 2-pyrrolidinone ring in place of the N-acetyl group of the sialic acid, and a branched aliphatic structure to fill the sialic acid C6 subsite. RESULTS: Inhibitor 2 {4-[2,2-bis(hydroxymethyl)-5-oxo-pyrrolidin-1-yl]-3-[(dipropylamino)methyl)]benzoic acid} was soaked into crystals of neuraminidase of A/tern/Australia/G70c/75 (N9), and the structure refined with 1.55 Å X-ray data. The benzene ring of the inhibitor tilted 8.9° compared to the previous compound (1), and the number of contacts, including hydrogen bonds, increased. However, the IC50 for compound 2 remained in the low micromolar range, likely because one propyl group was disordered. In this high-resolution structure of NA isolated from virus grown in chicken eggs, we found electron density for additional sugar units on the N-linked glycans compared to previous neuraminidase structures. In particular, seven mannoses and two N-acetylglucosamines are visible in the glycan attached to Asn200. This long, branched high-mannose glycan makes significant contacts with the neighboring subunit. CONCLUSIONS: We designed inhibitor 2 with an extended substituent at C4-corresponding to C6 of sialic acid-to increase the contact surface in the C6-subsite and to force the benzene ring to tilt to maximize these interactions while retaining the interactions of the carboxylate and the pyrolidinone substituents. The crystal structure at 1.55 Å showed that we partially succeeded in that the ring in 2 is tilted relative to 1 and the number of contacts increased, but one hydrophobic branch makes no contacts, perhaps explaining why the IC50 did not decrease. Future design efforts will include branches of unequal length so that both branches may be accommodated in the C6-subsite without conformational disorder. The high-mannose glycan attached to Asn200 makes several inter-subunit contacts and appears to stabilize the tetramer.


Asunto(s)
Ácido Benzoico/química , Ácido Benzoico/farmacología , Dominio Catalítico , Virus de la Influenza A/enzimología , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Animales , Antivirales/química , Antivirales/farmacología , Cristalografía por Rayos X , Glucosa/química , Concentración 50 Inhibidora , Modelos Moleculares , Neuraminidasa/metabolismo , Polisacáridos/química , Unión Proteica/efectos de los fármacos , Difracción de Rayos X
15.
iScience ; 25(8): 104839, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35996584

RESUMEN

Krüppel-like factor 4 (KLF4) is a transcription factor that has been proven necessary for both induction and maintenance of pluripotency and self-renewal. Whole-genome sequencing defined a unique mutation in KLF4 (KLF4K409Q) in human meningiomas. However, the molecular mechanism of this tumor-specific KLF4 mutation is unknown. Using genome-wide high-throughput and focused quantitative transcriptional approaches in human cell lines, primary meningeal cells, and meningioma tumor tissue, we found that a change in the evolutionarily conserved DNA-binding domain of KLF4 alters its DNA recognition preference, resulting in a shift in downstream transcriptional activity. In the KLF4K409Q-specific targets, the normally silent fibroblast growth factor 3 (FGF3) is activated. We demonstrated a neomorphic function of KLF4K409Q in stimulating FGF3 transcription through binding to its promoter and in using short tandem repeats (STRs) located within the locus as enhancers.

16.
RSC Adv ; 12(30): 19431-19444, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35865562

RESUMEN

This paper describes the synthesis of enamino carbonyl compounds by the copper(i)-catalyzed coupling of acceptor-substituted diazo compounds and tertiary thioamides. We plan to use this method to synthesize indolizidine (-)-237D analogs to find α6-selective antismoking agents. Therefore, we also performed in silico α6-nAchRs binding studies of selected products. Compounds with low root-mean-square deviation values showed more favorable binding free energies. We also report preliminary pharmacokinetic data on indolizidine (-)-237D and found it to have weak activity at CYP3A4. In addition, as enamino carbonyl compounds are also known for antimicrobial properties, we screened previously reported and new enamino carbonyl compounds for antibacterial, antimicrobial, and antifungal properties. Eleven compounds showed significant antimicrobial activities.

17.
Protein Sci ; 30(1): 262-269, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179363

RESUMEN

PyMOL commands are used to exert exquisite control over the appearance of a molecular model. This control has made PyMOL popular for making images of protein structures for publications and presentations. However, many users have poor recall of the commands due to infrequent use of PyMOL. This poor recall hinders the writing of new code in scripts. One solution is to build the new script by using code fragments as templates for modular parts of the task at hand. The code fragments can be accessed from a library while writing the code from inside a text editor (e.g., Visual Studio Code, Vim, and Emacs). We developed a library of PyMOL code templates or snippets called pymolsnips to ease the writing of PyMOL code in scripts. We made pymolsnips available on GitHub in formats for 18 popular text editors. Most of the supported text editors are available for Mac, Windows, and Linux operating systems. The GitHub site includes animations that complement the instructions for installing the library for each text editor. We expect that the library will help many PyMOL users to be more productive when writing PyMOL script files.


Asunto(s)
Modelos Moleculares , Lenguajes de Programación , Interfaz Usuario-Computador
18.
NPJ Precis Oncol ; 5(1): 48, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099825

RESUMEN

Recently Food and Drug Administration (FDA)-approved pralsetinib (BLU-667) and selpercatinib (LOXO-292) are RET-selective protein tyrosine kinase inhibitors for treating RET-altered cancers, but whether they have distinct activity was unknown. The L730V/I mutations at the roof of the solvent-front site of the RET kinase were identified as strongly resistant to pralsetinib but not to selpercatinib. Selpercatinib effectively inhibited these mutants and the KIF5B-RET(L730V/I) oncogene-driven tumors.

19.
Trends Cancer ; 7(12): 1074-1088, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34391699

RESUMEN

Rearranged during transfection (RET) is involved in the physiological development of some organ systems. Activating RET alterations via either gene fusions or point mutations are potent oncogenic drivers in non-small cell lung cancer, thyroid cancer, and in multiple diverse cancers. RET-altered cancers were initially treated with multikinase inhibitors (MKIs). The efficacy of MKIs was modest at the expense of notable toxicities from their off-target activity. Recently, highly potent and RET-specific inhibitors selpercatinib and pralsetinib were successfully translated to the clinic and FDA approved. We summarize the current state-of-the-art therapeutics with preclinical and clinical insights of these novel RET inhibitors, acquired resistance mechanisms, and future outlooks.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-ret/genética , Proto-Oncogenes
20.
Crystals (Basel) ; 11(8)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34745656

RESUMEN

X-ray crystallography remains a powerful method to gain atomistic insights into the catalytic and regulatory functions of RNA molecules. However, the technique requires the preparation of diffraction-quality crystals. This is often a resource- and time-consuming venture because RNA crystallization is hindered by the conformational heterogeneity of RNA, as well as the limited opportunities for stereospecific intermolecular interactions between RNA molecules. The limited success at crystallization explains in part the smaller number of RNA-only structures in the Protein Data Bank. Several approaches have been developed to aid the formation of well-ordered RNA crystals. The majority of these are construct-engineering techniques that aim to introduce crystal contacts to favor the formation of well-diffracting crystals. A typical example is the insertion of tetraloop-tetraloop receptor pairs into non-essential RNA segments to promote intermolecular association. Other methods of promoting crystallization involve chaperones and crystallization-friendly molecules that increase RNA stability and improve crystal packing. In this review, we discuss the various techniques that have been successfully used to facilitate crystal packing of RNA molecules, recent advances in construct engineering, and directions for future research in this vital aspect of RNA crystallography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA