Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Vet Res ; 55(1): 21, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365748

RESUMEN

The emergence of transferable linezolid resistance genes poses significant challenges to public health, as it does not only confer linezolid resistance but also reduces susceptibility to florfenicol, which is widely used in the veterinary field. This study evaluated the genetic characteristics of linezolid-resistant Staphylococcus aureus strains isolated from pig carcasses and further clarified potential resistance and virulence mechanisms in a newly identified sequence type. Of more than 2500 strains isolated in a prior study, 15 isolated from pig carcasses exhibited linezolid resistance (minimum inhibitory concentration ≥ 8 mg/L). The strains were characterized in detail by genomic analysis. Linezolid-resistant S. aureus strains exhibited a high degree of genetic lineage diversity, with one strain (LNZ_R_SAU_64) belonging to ST8004, which has not been reported previously. The 15 strains carried a total of 21 antibiotic resistance genes, and five carried mecA associated with methicillin resistance. All strains harbored cfr and fexA, which mediate resistance to linezolid, phenicol, and other antibiotics. Moreover, the strains carried enterotoxin gene clusters, including the hemolysin, leukotoxin, and protease genes, which are associated with humans or livestock. Some genes were predicted to be carried in plasmids or flanked by ISSau9 and the transposon Tn554, thus being transmittable between staphylococci. Strains carrying the plasmid replicon repUS5 displayed high sequence similarity (99%) to the previously reported strain pSA737 in human clinical samples in the United States. The results illustrate the need for continuous monitoring of the prevalence and transmission of linezolid-resistant S. aureus isolated from animals and their products.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Linezolid/farmacología , Staphylococcus aureus/genética , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/genética , Genómica , República de Corea , Pruebas de Sensibilidad Microbiana/veterinaria , Farmacorresistencia Bacteriana/genética , Enfermedades de los Porcinos/epidemiología
2.
Foodborne Pathog Dis ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442228

RESUMEN

Multidrug-resistant (MDR) Salmonella enterica serovar Agona infections affect public health globally. This investigation aimed to ascertain the antimicrobial resistance profiles and molecular characteristics of Salmonella Agona isolates obtained from food-producing animals. A total of 209 Salmonella Agona isolates were recovered from mostly chickens (139 isolates), pigs (56 isolates), cattle (11 isolates), and ducks (3 isolates) between 2010 and 2020 in South Korea. In addition, these Salmonella Agona isolates were obtained from 25 slaughterhouses nationwide. Furthermore, this serotype suddenly increased in chickens in 2020. Salmonella Agona from chickens showed high resistance (69-83%) to ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and chloramphenicol. Moreover, chicken/duck isolates (83.1%) showed significantly higher levels of MDR than cattle/pig isolates (1.5%). For molecular analysis by pulsed-field gel electrophoresis, infrared spectroscopy biotyping, and multilocus sequence typing in combination, a total of 23 types were observed. Especially two major types, P1-III-2-13 and P1-IV-2-13, comprised 59.3% of the total isolates spreading in most farms. Moreover, Salmonella Agona sequence type (ST)13 was predominant (96.7%) among three different STs (ST13, ST11, and ST292) widely detected in chickens (94.3%) in most farms located nationwide. Taken together, MDR Salmonella Agona in chickens might pose a potential risk to public health through direct contact or the food chain.

3.
Foodborne Pathog Dis ; 20(11): 492-501, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699238

RESUMEN

The production of ß-lactamase by nontyphoidal Salmonella has become a public health issue throughout the world. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of ß-lactamase-producing Salmonella enterica serovar Albany isolates. A total of 434 Salmonella Albany were obtained from feces and carcasses of healthy and diseased food-producing animals [cattle (n = 2), pigs (n = 3), chickens (n = 391), and ducks (n = 38)] during 2013-2020. Among the 434 Salmonella Albany isolates, 3.7% showed resistance to cefoxitin, and all the cefoxitin-resistant isolates were obtained from chickens. Moreover, Salmonella Albany isolates demonstrated high resistance to nalidixic acid (99.3%), trimethoprim/sulfamethoxazole (97.9%), ampicillin (86.6%), chloramphenicol (86.6%), and tetracycline (85.7%), as well as higher rates of multidrug resistance were detected in cefoxitin-resistant isolates compared to cefoxitin-susceptible isolates. All cefoxitin-resistant isolates harbored CMY-2-type ß-lactamase and belonged to seven different pulsotypes, with type IV-b (43.75%) and IV-a (25%) making up the majority. In addition, genes encoding cefoxitin resistant of all blaCMY-2-harboring Salmonella Albany isolates were horizontally transmitted to a recipient Escherichia coli J53 by conjugation. Furthermore, 93.75% (15/16) of conjugative plasmids harboring blaCMY-2 genes belong to ST12/CC12-IncI1. Genetic characteristics of transmitted blaCMY-2 genes were associated with ISEcp1, which can play an essential role in the effective mobilization and expression of these genes. Salmonella Albany containing blaCMY-2 in chickens can potentially be transferred to humans. Therefore, it is necessary to restrict antibiotic use and conduct continuous monitoring and analysis of resistant bacteria in the poultry industry.


Asunto(s)
Pollos , Salmonella enterica , Humanos , Animales , Porcinos , Bovinos , Pollos/microbiología , Cefoxitina/farmacología , Serogrupo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Salmonella/genética , República de Corea , Escherichia coli , Farmacorresistencia Microbiana , Farmacorresistencia Bacteriana Múltiple , Plásmidos
4.
Anaerobe ; 80: 102700, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36716814

RESUMEN

OBJECTIVES: Clostridioides difficile is an etiological agent of enteric diseases in humans and animals. Animals are considered a potential reservoir due to the genetic and antimicrobial resistance similarities between human and animal C. difficile isolates. In this study, we evaluated the genetic characteristics and antimicrobial resistance profiles of C. difficile isolated from 942 fecal samples collected from horses in South Korea during 2019-2020. METHODS: The C. difficile isolates were tested for toxin genes including tcdA (A), tcdB (B), and cdtAB (CDT) and deletions of the tcdC gene by PCR. In addition, ribotyping, multilocus sequence typing, and antimicrobial susceptibility tests were performed. RESULTS: Twenty-three (2.4%) C. difficile isolates were associated with diarrhea in foals under 1 year old during the spring-summer period. Of these, 82.6% were toxigenic strains, determined to be A+B+CDT+ (52.1%) or A+B+CDT‒ (30.4%). All isolates were susceptible to metronidazole and vancomycin, and resistant to cefotaxime and gentamicin, and 76.2% were multidrug resistant (MDR). RT078/ST11/Clade 5 was the most common genotype (47.8%), which was also found in animals and humans worldwide. All RT078/ST11/Clade 5 strains were toxigenic and had deletions of the tcdC gene. About half of these strains were resistant to moxifloxacin, and 63.6% were MDR. CONCLUSIONS: C. difficile isolates in this study consisted mostly of toxigenic and MDR strains, and their genetic properties were highly similar to human C. difficile isolates. These results suggest high possibilities of zoonotic transmission and can provide knowledge for establishing strategies for the treatment and prevention of C. difficile infection.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Farmacorresistencia Bacteriana , Animales , Antibacterianos/farmacología , Toxinas Bacterianas/genética , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/veterinaria , Farmacorresistencia Bacteriana/genética , Caballos , Pruebas de Sensibilidad Microbiana , Prevalencia , República de Corea/epidemiología , Ribotipificación
5.
Korean J Parasitol ; 59(6): 639-643, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34974671

RESUMEN

Enterocytozoon bieneusi is a microsporidian pathogen. Recently, the equestrian population is increasing in Korea. The horse-related zoonotic pathogens, including E. bieneusi, are concerns of public health. A total of 1,200 horse fecal samples were collected from riding centers and breeding farms in Jeju Island and inland areas. Of the fecal samples 15 (1.3%) were PCR positive for E. bieneusi. Interestingly, all positive samples came from Jeju Island. Diarrhea and infection in foals were related. Two genotypes (horse1, horse2) were identified as possible zoonotic groups requiring continuous monitoring.


Asunto(s)
Enterocytozoon , Microsporidiosis , Animales , China , Enterocytozoon/genética , Heces , Genotipo , Caballos , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Filogenia , Prevalencia , Zoonosis/epidemiología
6.
Infect Immun ; 83(4): 1620-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25644013

RESUMEN

Hexose phosphate is an important carbon source within the cytoplasm of host cells. Bacterial pathogens that invade, survive, and multiply within various host epithelial cells exploit hexose phosphates from the host cytoplasm through the hexose phosphate transport (HPT) system to gain energy and synthesize cellular components. In Escherichia coli, the HPT system consists of a two-component regulatory system (UhpAB) and a phosphate sensor protein (UhpC) that tightly regulate expression of a hexose phosphate transporter (UhpT). Although growing evidence suggests that Staphylococcus aureus also can invade, survive, and multiply within various host epithelial cells, the genetic elements involved in the HPT system in S. aureus have not been characterized yet. In this study, we identified and characterized the HPT system in S. aureus that includes the hptRS (a novel two-component regulatory system), the hptA (a putative phosphate sensor), and the uhpT (a hexose phosphate transporter) genes. The hptA, hptRS, and uhpT markerless deletion mutants were generated by an allelic replacement method using a modified pMAD-CM-GFPuv vector system. We demonstrated that both hptA and hptRS are required to positively regulate transcription of uhpT in response to extracellular phosphates, such as glycerol-3-phosphate (G3P), glucose-6-phosphate (G6P), and fosfomycin. Mutational studies revealed that disruption of the hptA, hptRS, or uhpT gene impaired the growth of bacteria when the available carbon source was limited to G6P, impaired survival/multiplication within various types of host cells, and increased resistance to fosfomycin. The results of this study suggest that the HPT system plays an important role in adaptation of S. aureus within the host cells and could be an important target for developing novel antistaphylococcal therapies.


Asunto(s)
Antibacterianos/farmacología , Fosfomicina/farmacología , Hexosas/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Animales , Proteínas Bacterianas/genética , Transporte Biológico/genética , Línea Celular , Farmacorresistencia Bacteriana , Células Epiteliales/microbiología , Eliminación de Gen , Glucosa-6-Fosfato/metabolismo , Humanos , Ratones , Staphylococcus aureus/metabolismo , Activación Transcripcional/genética
7.
Front Vet Sci ; 10: 1142316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035803

RESUMEN

Bovine tetanus is a serious infectious disease of the central nervous system caused by the exotoxin produced by Clostridium tetani and is characterized by persistent tension and spasm of the rhabdomyocytes. Currently, many studies have focused on diagnosing tetanus; however, only a few studies on treatment methods have been conducted. Therefore, cattle with tetanus have been treated using symptomatic therapy. In this case, severe muscle spasticity and spasms were observed in a 9-month-old Hanwoo (Korean indigenous cattle) bull, and aspartate aminotransferase and creatine kinase levels were increased in serum biochemical tests. Clinically, bovine tetanus was strongly suspected, and metronidazole was administered orally for 5 days. To treat the intensifying bloat, a temporary rumenostomy was performed on the third day of onset, and the toxin gene (tetanospasmin) of C. tetani was amplified by polymerase chain reaction analysis from the collected ruminal fluid. Magnesium and sedatives (acepromazine) were administered for 7 days to treat muscle spasticity and spasms. Muscle spasticity and spasm markedly improved, and the bull stood up from the lateral recumbent position. On the 17th day after onset, all tetanus-related symptoms resolved and a normal diet was started. Our findings demonstrated that treatment with metronidazole, magnesium, and acepromazine was effective in the bull with tetanus.

8.
Sci Rep ; 13(1): 5575, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019949

RESUMEN

This study aimed to investigate the pathogenicity of extraintestinal pathogenic Escherichia coli (ExPEC) isolated from dog and cat lung samples in South Korea. A total of 101 E. coli isolates were analyzed for virulence factors, phylogroups, and O-serogroups, and their correlation with bacterial pneumonia-induced mortality was elucidated. P fimbriae structural subunit (papA), hemolysin D (hlyD), and cytotoxic necrotizing factor 1 (cnf1) were highly prevalent in both species, indicating correlation with bacterial pneumonia. Phylogroups B1 and B2 were the most prevalent phylogroups (36.6% and 32.7%, respectively) and associated with high bacterial pneumonia-induced mortality rates. Isolates from both species belonging to phylogroup B2 showed high frequency of papA, hlyD, and cnf1. O-serogrouping revealed 21 and 15 serogroups in dogs and cats, respectively. In dogs, O88 was the most prevalent serogroup (n = 8), and the frequency of virulence factors was high for O4 and O6. In cats, O4 was the most prevalent serogroup (n = 6), and the frequency of virulence factors was high for O4 and O6. O4 and O6 serogroups were mainly grouped under phylogroup B2 and associated with high bacterial pneumonia-induced mortality. This study characterized the pathogenicity of ExPEC and described the probability of ExPEC pneumonia-induced mortality.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Gatos , Perros , Animales , Escherichia coli , Virulencia , Enfermedades de los Gatos/microbiología , Infecciones por Escherichia coli/microbiología , Enfermedades de los Perros/microbiología , Factores de Virulencia , Pulmón , Filogenia
9.
Front Cell Infect Microbiol ; 13: 1296118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029266

RESUMEN

Introduction: Cryptosporidium, Cystoisospora, and Giardia duodenalis are gastrointestinal protozoa parasites that cause diarrhea in various animals. However, information regarding the detection and phylogenetic characterization of gastrointestinal protozoa parasites in cats is limited throughout South Korea. Therefore, this study aimed to determine the detection and identify subspecies of gastrointestinal protozoa parasites in cats from South Korea. Methods: A total of 290 fecal samples were collected from stray, companion, and shelter cats in six provinces. Cryptosporidium, Cystoisospora, and G. duodenalis were identified by PCR. All positive samples were subtyped by PCR and sequencing of gp60, ITS-1, tpi, bg, and gdh. Results: The overall detection of gastrointestinal protozoan parasitic infection was 17.93%. G. duodenalis was the most prevalent, with 7.93%, followed by Cystoisospora spp. (7.24%) and Cryptosporidium spp. (4.48%). In addition, C. felis (n=10), C. parvum (n=2), C. ryanae (n=1), Cystoisospora felis (n=14), Cystoisospora suis (n=5), Cystoisospora ohioensis (n=1), Cystoisospora spp. were identified in subspecies analysis of positive samples. C. felis showed a significant association with diarrhea (7.81%) and living condition (6.04%), and Cystoisospora felis in diarreha (9.38%) according to detection. Through phylogenetic analysis of the tpi, bg, and gdh genes from 23 G. duodenalispositive samples, it was confirmed that the samples of present study belonged to assemblage A, B, C, and D. Discussion: South Korean cats have a high rate of gastrointestinal protozoan parasites infection with cat-specific Cryptosporidium and Cystoisospora, which are associated with living conditions and diarrhea symptoms. Moreover, zoonotic and other animal-specific subtype of protozoan parasites have been detected in cat feces.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Felis , Giardia lamblia , Giardiasis , Parasitosis Intestinales , Parásitos , Gatos , Animales , Giardia lamblia/genética , Cryptosporidium/genética , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Giardiasis/epidemiología , Giardiasis/veterinaria , Giardiasis/parasitología , Filogenia , Diarrea/veterinaria , Heces/parasitología , República de Corea/epidemiología , Prevalencia , Genotipo
10.
Antibiotics (Basel) ; 12(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37107106

RESUMEN

Overall, 836 Escherichia coli isolates (695 isolates from dogs and 141 from cats) were recovered from the diarrhea, skin/ear, urine, and genitals of dogs and cats between 2018 and 2019. Cefovecin and enrofloxacin resistance were noted in 17.1% and 21.2% of E. coli isolates, respectively. The cefovecin and enrofloxacin resistance rates were higher in dog isolates (18.1% and 22.9%) compared with the rates in cat isolates (12.1%, 12.8%). Interestingly, resistance to both antimicrobials was noted in 10.8% (90/836) of the isolates, predominantly in isolates from dogs. blaCTX-M-14, blaCTX-M-15, and blaCMY-2 were the most frequent extended-spectrum ß-lactamase/plasmid-mediated AmpC ß-lactamase (ESBL/AmpC)- gene types. The co-existence of blaCTX-M andblaCMY-2 was noted in six E. coli isolates from dogs. Sequencing analysis demonstrated that S83L and D87N in gyrA and S80I in parC were the most frequent point mutations in the quinolone resistance-determining regions of the cefovecin and enrofloxacin-resistant isolates. A total of 11 isolates from dogs carried the plasmid-mediated quinolone resistance genes (six aac(6')-Ib-cr, four qnrS, and one qnrB), while only two cat isolates carried the qnrS gene. Multilocus sequence typing of the cefovecin and enrofloxacin-resistant isolates revealed that sequence type (ST)131 E. coli carrying blaCTX-M-14 and blaCTX-M-15 genes and ST405 E. coli carrying blaCMY-2 gene were predominant among the isolated E. coli strains. The majority of the ESBL/AmpC-producing isolates displayed diverse pulsed-field gel electrophoresis profiles. This study demonstrated that third-generation cephalosporin- and fluoroquinolone-resistant E. coli were widely distributed in companion animals. The detection of the pandemic ST131 clone carrying blaCTX-M-14/15 in companion animals presented a public health threat.

11.
Microorganisms ; 11(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138136

RESUMEN

Enterococcus spp. are typically found in the gastrointestinal tracts of humans and animals. However, they have the potential to produce opportunistic infections that can be transmitted to humans or other animals, along with acquired antibiotic resistance. In this study, we aimed to investigate the antimicrobial resistance profiles of Enterococcus faecium and Enterococcus faecalis isolates obtained from companion animal dogs and cats in Korea during 2020-2022. The resistance rates in E. faecalis towards most of the tested antimicrobials were relatively higher than those in E. faecium isolated from dogs and cats. We found relatively higher resistance rates to tetracycline (65.2% vs. 75.2%) and erythromycin (39.5% vs. 49.6%) in E. faecalis isolated from cats compared to those from dogs. However, in E. faecium, the resistance rates towards tetracycline (35.6% vs. 31.5%) and erythromycin (40.3% vs. 35.2%) were comparatively higher for dog isolates than cats. No or very few E. faecium and E. faecalis isolates were found to be resistant to daptomycin, florfenicol, tigecycline, and quinupristin/dalfopristin. Multidrug resistance (MDR) was higher in E. faecalis recovered from cats (44%) and dogs (33.9%) than in E. faecium isolated from cats (24.1%) and dogs (20.5%). Moreover, MDR patterns in E. faecalis isolates from dogs (27.2%) and cats (35.2%) were shown to encompass five or more antimicrobials. However, E. faecium isolates from dogs (at 13.4%) and cats (at 14.8%) were resistant to five or more antimicrobials. Taken together, the prevalence of antimicrobial-resistant enterococci in companion animals presents a potential public health concern.

12.
Antibiotics (Basel) ; 13(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38247586

RESUMEN

The occurrence of antimicrobial-resistant bacteria in companion animals poses public health hazards globally. This study aimed to evaluate the antimicrobial resistance profiles and patterns of commensal E. coli strains obtained from fecal samples of healthy dogs and cats in South Korea between 2020 and 2022. In total, 843 E. coli isolates (dogs, n = 637, and cats, n = 206) were assessed for susceptibility to 20 antimicrobials. The resistance rates of the most tested antimicrobials were significantly higher in dog than in cat isolates. Cefalexin (68.9%) demonstrated the highest resistance rates, followed by ampicillin (38.3%), tetracycline (23.1%), and cefazolin (18.7%). However, no or very low resistance (0-0.6%) to amikacin, imipenem, piperacillin, and colistin was found in both dog and cat isolates. Overall, 42.3% of the isolates exhibited multidrug resistance (MDR). MDR in isolates from dogs (34.9%) was significantly higher than in those from cats (20.9%). The main components of the resistance patterns were cefalexin and ampicillin in both dog and cat isolates. Additionally, MDR patterns in isolates from dogs (29.2%) and cats (16%) were shown to encompass five or more antimicrobials. Multidrug-resistant commensal E. coli could potentially be spread to humans or other animals through clonal or zoonotic transmission. Therefore, the incidence of antimicrobial resistance in companion animals highlights the urgent need to restrict antimicrobial resistance and ensure the prudent use of antimicrobials in Korea.

13.
Animals (Basel) ; 11(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34573625

RESUMEN

Balantioides coli is a zoonotic protozoan parasite whose main reservoir is pigs. Recent studies have shown that B. coli variant A but not B has zoonotic potential. While B. coli infection has been reported in different animals and countries, the prevalence of the zoonotic variant is limited due to a lack of molecular information. Therefore, this study investigated the prevalence of B. coli in domestic pigs in Korea and assessed its zoonotic potential. A total of 188 pig fecal samples were collected from slaughterhouses in Korea. B. coli was identified by microscopy and molecular methods. B. coli was identified in 79 (42.9%) and 174 (94.6%) samples by microscopy and polymerase chain reaction (PCR), respectively. This study also developed a PCR-restriction fragment length polymorphism (PCR-RFLP) method to differentiate B. coli variant A from B without sequence analysis. Using this method, 62 (33.7%) and 160 (87.0%) samples were positive for variants A and B, respectively, and 48 (26.1%) samples were co-infected with both variants. Sequence and phylogenetic analyses showed a high genetic diversity of B. coli in pigs in Korea. To our knowledge, this is the first study to develop a method to differentiate B. coli variants A and B without sequence analysis and to assess the molecular epidemiology of B. coli in pigs. Continuous monitoring of zoonotic B. coli in pigs should be performed as pigs are the main source of human balantidiasis.

14.
Vet Sci ; 9(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35051085

RESUMEN

This study aimed to determine the prevalence of several pathovirotypes and evaluate the association of haemolysis with the virotypes of pathogenic E. coli isolated from post-weaning piglets in South Korea from 2015 to 2019. We isolated 890 E. coli and tested for O-serogroups, virulence genes, haemolysis, and multilocus sequence typing. The predominant virotypes were STb:EAST1:AIDA-I, F18b:Stx2e:AIDA-I, F18:STa:STb:Stx2e, and eae:Paa in enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC), ETEC/STEC, and enteropathogenic E. coli (EPEC), respectively. Regarding serogroups, O139, O149, O141, and O121 were mostly detected in F18:Stx2e:AIDA-I, F4:LT:STb:EAST1, F18:STa:STb, and F18:Stx2e:EAST1, respectively. There was a significant change in the frequency of the O141:F18ac:STa:STb (an increase from 1.6% to 10.1%) and O139:F18ab:Stx2e:AIDA-I (a decrease from 13.0% to 5.3%) virotypes in ETEC and STEC, respectively, from 2015 to 2019. The O141:F18ac:STa:STb virotype was mostly detected in the central area and was spreading to the southern area. The odds ratios between haemolysis and virotypes were 11.0, 6.25, and 8.57 in F18:STa:STb, F18:Stx2e:AIDA-I, and F4:LT:STb:EAST1, respectively. Our findings provide insights regarding the recent prevalence of pathogenic E. coli in South Korea and could be used for the development of vaccines for E. coli responsible for PWD and ED in post-weaning piglets.

15.
Transbound Emerg Dis ; 67(4): 1645-1653, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32009300

RESUMEN

Canine parvovirus type 2 (CPV-2) is an aetiological agent that causes acute haemorrhagic enteritis and fatal myocarditis in dogs. Since CPV-2 first emerged in the late 1970s, its rapid evolution has resulted in three antigenic variants: CPV-2a, CPV-2b and CPV-2c. Here, we report, for the first time in Korea, two cases of CPV-2c infection in two dogs with severe diarrhoea. The complete open reading frame (4,269nt) of CPV-2, encoding both non-structural (NS) and structural (VP) proteins, was sequenced. Based on the amino acid Gln present at residue 426 of the VP2 gene, these strains were typed as CPV-2c, and were named Korea CPV-2c_1 and Korea CPV-2c_2. These strains shared 99.48% reciprocal nucleotide sequence identity and had the highest nucleotide identity (99.77%-99.34%) with Asian CPV strains isolated in China, Italy (found in a dog imported from Thailand), and Vietnam from 2013 to 2017. Phylogenetic analysis based on the non-structural (NS1) and capsid (VP2) genes revealed that Korean CPV-2c strains clustered closely to Asian CPV strains, and separately from strains isolated in Europe, South America and North America. Amino acid changes never reported before were observed in NS1 (Thr70Pro, Cys287Tyr), VP1 (Lys17Arg, Phe33Leu) and VP2 (Gln365His, Ala516Val). Additional observed mutations, including Phe267Tyr, Tyr324Ile and Gln370Arg, have been previously reported in the recent CPV-2c strains with Asian origins. These results suggest that the Korean CPV-2c strains were potentially introduced via neighbouring Asian countries.


Asunto(s)
Enfermedades de los Perros/genética , Infecciones por Parvoviridae/veterinaria , Parvovirus Canino/genética , Animales , Secuencia de Bases , Proteínas de la Cápside/genética , ADN Viral/genética , Enfermedades de los Perros/virología , Perros , Sistemas de Lectura Abierta/genética , Infecciones por Parvoviridae/genética , Infecciones por Parvoviridae/virología , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , República de Corea , Proteínas no Estructurales Virales/genética , Proteínas Estructurales Virales/genética
16.
J Microbiol Biotechnol ; 17(3): 461-7, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18050950

RESUMEN

Staphylococcus aureus strains are important foodborne pathogens that produce various toxins. To evaluate the risk of the enterotoxins, four S. aureus strains from kinbap and two clinical samples were isolated and identified, and their expression of the enterotoxin genes were analyzed using a reverse transcription real-time PCR. Various enterotoxin genes were detected, including sea, seg, seh, sei, sen, seo, and sem, where each isolate contained one or two. When the mRNA detection of the enterotoxin genes was analyzed using a reverse transcriptase PCR, various levels of expression were found depending on the species and enterotoxin gene. Therefore, it is reasonable to suggest that the poisoning risk of S. aureus can be effectively evaluated based on the gene expression at the mRNA level.


Asunto(s)
Biotecnología/métodos , Enterotoxinas/genética , Enterotoxinas/metabolismo , Oryza/microbiología , ARN Mensajero/metabolismo , Intoxicación Alimentaria Estafilocócica/diagnóstico , Staphylococcus aureus/metabolismo , ADN Bacteriano/análisis , ADN Bacteriano/aislamiento & purificación , ADN Complementario/metabolismo , Humanos , Inmunoensayo , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Bacteriano/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Intoxicación Alimentaria Estafilocócica/microbiología , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación
17.
Sci Rep ; 7: 44929, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28322317

RESUMEN

Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus.


Asunto(s)
Bacteriófagos/fisiología , Sistemas CRISPR-Cas , Técnicas de Transferencia de Gen , Ingeniería Genética , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Toxinas Bacterianas , Genoma Viral , Especificidad del Huésped , Humanos , Plásmidos/genética
18.
PLoS One ; 11(3): e0151409, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26953931

RESUMEN

The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaß, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaß by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus.


Asunto(s)
Elementos Transponibles de ADN , Islas Genómicas , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Sitios de Unión , Empaquetamiento del ADN , Endodesoxirribonucleasas/metabolismo , Dosificación de Gen , Orden Génico , Genoma Viral , Integrasas/metabolismo , Mutagénesis Insercional , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Unión Proteica , Análisis de Secuencia de ADN , Transducción Genética
19.
Clin Vaccine Immunol ; 22(11): 1146-53, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311246

RESUMEN

Current vaccinations are effective against encapsulated strains of Streptococcus pneumoniae, but they do not protect against nonencapsulated Streptococcus pneumoniae (NESp), which is increasing in colonization and incidence of pneumococcal disease. Vaccination with pneumococcal proteins has been assessed for its ability to protect against pneumococcal disease, but several of these proteins are not expressed by NESp. Pneumococcal surface protein K (PspK), an NESp virulence factor, has not been assessed for immunogenic potential or host modulatory effects. Mammalian cytokine expression was determined in an in vivo mouse model and in an in vitro cell culture system. Systemic and mucosal mouse immunization studies were performed to determine the immunogenic potential of PspK. Murine serum and saliva were collected to quantitate specific antibody isotype responses and the ability of antibody and various proteins to inhibit epithelial cell adhesion. Host cytokine response was not reduced by PspK. NESp was able to colonize the mouse nasopharynx as effectively as encapsulated pneumococci. Systemic and mucosal immunization provided protection from colonization by PspK-positive (PspK(+)) NESp. Anti-PspK antibodies were recovered from immunized mice and significantly reduced the ability of NESp to adhere to human epithelial cells. A protein-based pneumococcal vaccine is needed to provide broad protection against encapsulated and nonencapsulated pneumococci in an era of increasing antibiotic resistance and vaccine escape mutants. We demonstrate that PspK may serve as an NESp target for next-generation pneumococcal vaccines. Immunization with PspK protected against pneumococcal colonization, which is requisite for pneumococcal disease.


Asunto(s)
Proteínas Bacterianas/inmunología , Vacunas Neumococicas/inmunología , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/inmunología , Factores de Virulencia/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Formación de Anticuerpos/inmunología , Proteínas Bacterianas/genética , Adhesión Celular , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Inmunización , Ratones , Nasofaringe/microbiología , Neumonía Neumocócica/microbiología , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética
20.
Sci Rep ; 5: 9784, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25891795

RESUMEN

Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaß are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaß, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaß appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaß. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaß, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus.


Asunto(s)
Transferencia de Gen Horizontal , Islas Genómicas/genética , Staphylococcus aureus/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Southern Blotting , ADN Bacteriano/análisis , ADN Viral/análisis , Genoma Bacteriano , Profagos/genética , Profagos/fisiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA