Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Angew Chem Int Ed Engl ; 62(7): e202212063, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36316279

RESUMEN

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2 O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2 O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2 O to D2 O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2 O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Agua , Solventes
2.
J Biol Chem ; 294(14): 5657-5665, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30755483

RESUMEN

α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or ß-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.


Asunto(s)
Catequina/análogos & derivados , Metionina/química , Agregado de Proteínas , Pliegue de Proteína , alfa-Sinucleína/química , Catequina/química , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Metionina/metabolismo , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , alfa-Sinucleína/metabolismo
3.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114222

RESUMEN

The intrinsically disordered protein α-synuclein plays a major role in Parkinson's disease. The protein can oligomerize resulting in the formation of various aggregated species in neuronal cells, leading to neurodegeneration. The interaction of α-synuclein with biological cell membranes plays an important role for specific functions of α-synuclein monomers, e.g., in neurotransmitter release. Using different types of detergents to mimic lipid molecules present in biological membranes, including the presence of Ca2+ ions as an important structural factor, we aimed to gain an understanding of how α-synuclein interacts with membrane models and how this affects the protein conformation and potential oligomerization. We investigated detergent binding stoichiometry, affinity and conformational changes of α-synuclein taking detergent concentration, different detergent structures and charges into account. With native nano-electrospray ionization ion mobility-mass spectrometry, we were able to detect unique conformational patterns resulting from binding of specific detergents to α-synuclein. Our data demonstrate that α-synuclein monomers can interact with detergent molecules irrespective of their charge, that protein-micelle interactions occur and that micelle properties are an important factor.


Asunto(s)
Detergentes/farmacología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Nanotecnología , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Espectrometría de Masa por Ionización de Electrospray , alfa-Sinucleína/efectos de los fármacos
4.
J Am Chem Soc ; 141(26): 10440-10450, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31141355

RESUMEN

The mechanisms behind the Amyloid-ß (Aß) peptide neurotoxicity in Alzheimer's disease are intensely studied and under debate. One suggested mechanism is that the peptides assemble in biological membranes to form ß-barrel shaped oligomeric pores that induce cell leakage. Direct detection of such putative assemblies and their exact oligomeric states is however complicated by a high level of heterogeneity. The theory consequently remains controversial, and the actual formation of pore structures is disputed. We herein overcome the heterogeneity problem by employing a native mass spectrometry approach and demonstrate that Aß(1-42) peptides form coclusters with membrane mimetic detergent micelles. The coclusters are gently ionized using nanoelectrospray and transferred into the mass spectrometer where the detergent molecules are stripped away using collisional activation. We show that Aß(1-42) indeed oligomerizes over time in the micellar environment, forming hexamers with collision cross sections in agreement with a general ß-barrel structure. We also show that such oligomers are maintained and even stabilized by addition of lipids. Aß(1-40) on the other hand form significantly lower amounts of oligomers, which are also of lower oligomeric state compared to Aß(1-42) oligomers. Our results thus support the oligomeric pore hypothesis as one important cell toxicity mechanism in Alzheimer's disease. The presented native mass spectrometry approach is a promising way to study such potentially very neurotoxic species and how they could be stabilized or destabilized by molecules of cellular or therapeutic relevance.


Asunto(s)
Péptidos beta-Amiloides/síntesis química , Fragmentos de Péptidos/síntesis química , Péptidos beta-Amiloides/química , Humanos , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Micelas , Modelos Moleculares , Fragmentos de Péptidos/química , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/química
5.
Angew Chem Weinheim Bergstr Ger ; 135(7): e202212063, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38516046

RESUMEN

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2O to D2O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.

6.
J Inorg Biochem ; 238: 112063, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370505

RESUMEN

The popular genetic model organism Caenorhabditis elegans (C. elegans) encodes 34 globins, whereby the few that are well-characterized show divergent properties besides the typical oxygen carrier function. Here, we present a biophysical characterization and expression analysis of C. elegans globin-3 (GLB-3). GLB-3 is predicted to exist in two isoforms and is expressed in the reproductive and nervous system. Knockout of this globin causes a 99% reduction in fertility and reduced motility. Spectroscopic analysis reveals that GLB-3 exists as a bis-histidyl-ligated low-spin form in both the ferrous and ferric heme form. A function in binding of diatomic gases is excluded on the basis of the slow CO-binding kinetics. Unlike other globins, GLB-3 is also not capable of reacting with H2O2, H2S, and nitrite. Intriguingly, not only does GLB-3 contain a high number of cysteine residues, it is also highly stable under harsh conditions (pH = 2 and high concentrations of H2O2). The resilience diminishes when the N- and C-terminal extensions are removed. Redox potentiometric measurements reveal a slightly positive redox potential (+8 ± 19 mV vs. SHE), suggesting that the heme iron may be able to oxidize cysteines. Electron paramagnetic resonance shows that formation of an intramolecular disulphide bridge, involving Cys70, affects the heme-pocket region. The results suggest an involvement of the globin in (cysteine) redox chemistry.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Globinas/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Hemo/química , Sistema Nervioso/metabolismo
7.
Sci Adv ; 8(17): eabn0044, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486726

RESUMEN

The alpha-synuclein mutation E83Q, the first in the NAC domain of the protein, was recently identified in a patient with dementia with Lewy bodies. We investigated the effects of this mutation on the aggregation of aSyn monomers and the structure, morphology, dynamic, and seeding activity of the aSyn fibrils in neurons. We found that it markedly accelerates aSyn fibrillization and results in the formation of fibrils with distinct structural and dynamic properties. In cells, this mutation is associated with higher levels of aSyn, accumulation of pS129, and increased toxicity. In a neuronal seeding model of Lewy body (LB) formation, the E83Q mutation significantly enhances the internalization of fibrils into neurons, induces higher seeding activity, and results in the formation of diverse aSyn pathologies, including the formation of LB-like inclusions that recapitulate the immunohistochemical and morphological features of brainstem LBs observed in brains of patients with Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Cuerpos de Lewy/química , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Mutación , Enfermedad de Parkinson/metabolismo , Virulencia , alfa-Sinucleína/genética
8.
Sci Rep ; 10(1): 16293, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004902

RESUMEN

α-Synuclein is an intrinsically disordered protein that can self-aggregate and plays a major role in Parkinson's disease (PD). Elevated levels of certain metal ions are found in protein aggregates in neurons of people suffering from PD, and environmental exposure has also been linked with neurodegeneration. Importantly, cellular interactions with metal ions, particularly Ca2+, have recently been reported as key for α-synuclein's physiological function at the pre-synapse. Here we study effects of metal ion interaction with α-synuclein at the molecular level, observing changes in the conformational behaviour of monomers, with a possible link to aggregation pathways and toxicity. Using native nano-electrospray ionisation ion mobility-mass spectrometry (nESI-IM-MS), we characterize the heterogeneous interactions of alkali, alkaline earth, transition and other metal ions and their global structural effects on α-synuclein. Different binding stoichiometries found upon titration with metal ions correlate with their specific binding affinity and capacity. Subtle conformational effects seen for singly charged metals differ profoundly from binding of multiply charged ions, often leading to overall compaction of the protein depending on the preferred binding sites. This study illustrates specific effects of metal coordination, and the associated electrostatic charge patterns, on the complex structural space of the intrinsically disordered protein α-synuclein.


Asunto(s)
alfa-Sinucleína/química , Calcio/química , Cobre/química , Proteínas Intrínsecamente Desordenadas/química , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Metales/química , Potasio/química , Conformación Proteica , Sodio/química , Zinc/química
9.
Nat Commun ; 11(1): 2820, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499486

RESUMEN

As an intrinsically disordered protein, monomeric alpha-synuclein (aSyn) occupies a large conformational space. Certain conformations lead to aggregation prone and non-aggregation prone intermediates, but identifying these within the dynamic ensemble of monomeric conformations is difficult. Herein, we used the biologically relevant calcium ion to investigate the conformation of monomeric aSyn in relation to its aggregation propensity. We observe that the more exposed the N-terminus and the beginning of the NAC region of aSyn are, the more aggregation prone monomeric aSyn conformations become. Solvent exposure of the N-terminus of aSyn occurs upon release of C-terminus interactions when calcium binds, but the level of exposure and aSyn's aggregation propensity is sequence and post translational modification dependent. Identifying aggregation prone conformations of monomeric aSyn and the environmental conditions they form under will allow us to design new therapeutics targeted to the monomeric protein.


Asunto(s)
Agregado de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Benzotiazoles/metabolismo , Calcio/metabolismo , Humanos , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Fosforilación , Conformación Proteica , Espectroscopía de Protones por Resonancia Magnética , Relación Estructura-Actividad
10.
Sci Rep ; 9(1): 2937, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814575

RESUMEN

Growing evidence implicates α-synuclein aggregation as a key driver of neurodegeneration in Parkinson's disease (PD) and other neurodegenerative disorders. Herein, the molecular and structural mechanisms of inhibiting α-synuclein aggregation by novel analogs of nordihydroguaiaretic acid (NDGA), a phenolic dibenzenediol lignan, were explored using an array of biochemical and biophysical methodologies. NDGA analogs induced modest, progressive compaction of monomeric α-synuclein, preventing aggregation into amyloid-like fibrils. This conformational remodeling preserved the dynamic adoption of α-helical conformations, which are essential for physiological membrane interactions. Oxidation-dependent NDGA cyclization was required for the interaction with monomeric α-synuclein. NDGA analog-pretreated α-synuclein did not aggregate even without NDGA-analogs in the aggregation mixture. Strikingly, NDGA-pretreated α-synuclein suppressed aggregation of naïve untreated aggregation-competent monomeric α-synuclein. Further, cyclized NDGA reduced α-synuclein-driven neurodegeneration in Caenorhabditis elegans. The cyclized NDGA analogs may serve as a platform for the development of small molecules that stabilize aggregation-resistant α-synuclein monomers without interfering with functional conformations yielding potential therapies for PD and related disorders.


Asunto(s)
Amiloide/metabolismo , Masoprocol/farmacología , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Humanos , Masoprocol/análogos & derivados , Masoprocol/metabolismo , Fosfolípidos/metabolismo , Agregación Patológica de Proteínas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA