RESUMEN
Two bacterial strains, SP1S1-4T and SP2S1-2T, were isolated from sediment samples collected in the Stockholm archipelago in November 2021. Following whole-genome sequencing, these strains were identified as tentatively belonging to two novel Shewanella genospecies, based on digital DNA-DNA hybridization, as implemented in the Type Strain Genome Server. Shewanella septentrionalis, Shewanella baltica and Shewanella hafniensis were, in this order and within a narrow genomic relatedness range, their closest genotypic relatives. Additional sampling and sequencing efforts led to the retrieval of distinct isolates that were monophyletic with SP1S1-4T and SP2S1-2T, respectively, based on phylogenomic analysis of whole-genome sequences. Comparative analyses of genome sequence data, which included blast-based average nucleotide identity, core genome-based and core proteome-based phylogenomics, in addition to MALDI-TOF MS-based protein profiling, confirmed the distinctness of the putative novel genospecies with respect to their closest genotypic relatives. A comprehensive phenotypic characterisation of SP1S1-4T and SP2S1-2T revealed only minor differences with respect to the type strains of S. septentrionalis, S. baltica and S. hafniensis. Based on the collective phylogenomic, proteomic, and phenotypic evidence presented here, we describe two novel genospecies within the genus Shewanella, for which the names Shewanella scandinavica sp. nov. and Shewanella vaxholmensis sp. nov. are proposed. The type strains are, respectively, SP2S1-2T (=CCUG 76457T=CECT 30688T), with a draft genome sequence of 5â041â805 bp and a G+C content of 46.3âmol%, and SP1S1-4T (=CCUG 76453T=CECT 30684T), with a draft genome sequence of 4â920147 bp and a G+C content of 46.0âmol%. Our findings suggest the existence of a species complex formed by the species S. baltica, S. septentrionalis, S. scandinavica sp. nov., and S. vaxholmensis sp. nov., with S. hafniensis falling in the periphery, where distinct genomic species clusters could be identified. However, this does not exclude the possibility of a continuum of genomic diversity within this sedimental ecosystem, as discussed herein with additional sequenced isolates.
Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Genoma Bacteriano , Sedimentos Geológicos , Filogenia , Análisis de Secuencia de ADN , Shewanella , Secuenciación Completa del Genoma , Shewanella/genética , Shewanella/aislamiento & purificación , Shewanella/clasificación , Sedimentos Geológicos/microbiología , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Hibridación de Ácido Nucleico , Agua de Mar/microbiología , Genotipo , Composición de BaseRESUMEN
The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same format of names but assigns different nomenclatural status values to the names. The resulting nomenclatural confusion is not beneficial to the wider scientific community. Such ambiguity is expected to result from the establishment of the 'Code of Nomenclature of Prokaryotes Described from DNA Sequence Data' ('SeqCode'), which is in general and specific conflict with the ICNP and the ICN. Shortcomings in the interpretation of the ICNP may have exacerbated the incompatibility between the codes. It is reiterated as to why proposals to accept sequences as nomenclatural types of species and subspecies with validly published names, now implemented in the SeqCode, have not been implemented by the International Committee on Systematics of Prokaryotes (ICSP), which oversees the ICNP. The absence of certain regulations from the ICNP for the naming of as yet uncultivated prokaryotes is an acceptable scientific argument, although it does not justify the establishment of a separate code. Moreover, the proposals rejected by the ICSP are unnecessary to adequately regulate the naming of uncultivated prokaryotes. To provide a better service to the wider scientific community, an alternative proposal to emend the ICNP is presented, which would result in Candidatus names being regulated analogously to validly published names. This proposal is fully consistent with previous ICSP decisions, preserves the essential unity of nomenclature and avoids the expected nomenclatural confusion.
Asunto(s)
Ácidos Grasos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/químicaRESUMEN
BACKGROUND: Chromobacterium is a genus of fourteen species with validly published names, most often found in soil and waters in tropical and subtropical regions around the world. The most well-known species of the genus, C. violaceum, occasionally causes clinically relevant infections; cases of soft tissue infections with septicemia and fatal outcomes have been described. CASE PRESENTATION: Here, we present a clinical case report of a 79-year-old man from Sweden with a soft-tissue infection and septicemia. The pathogen was identified as a strain of Chromobacterium species, but not C. violaceum. The patient was treated with clindamycin and ciprofloxacin and recovered well. CONCLUSIONS: This case report demonstrates the potential of Chromobacterium species as infectious agents in immunocompetent patients. It also indicates the existence of a novel species.
Asunto(s)
Infecciones por Bacterias Gramnegativas , Sepsis , Masculino , Humanos , Anciano , Chromobacterium , Suecia , Sepsis/diagnóstico , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Ciprofloxacina/uso terapéutico , Clindamicina/uso terapéutico , Infecciones por Bacterias Gramnegativas/microbiologíaRESUMEN
Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.
Asunto(s)
Brevibacterium , Brevibacterium/genética , Brevibacterium/metabolismo , Ecosistema , Genómica , Filogenia , Antibacterianos/farmacología , Antibacterianos/metabolismo , Familia de Multigenes , FenazinasRESUMEN
Two bacterial strains, SP1W3T and SP1S2-7T, were isolated from samples of water and sediments collected in Vaxholm, a town located on the Stockholm archipelago in the Baltic Sea, in November 2021. The strains were identified as novel genomic species within the genus Shewanella, based upon comparative analysis of whole genome sequence data. Strain SP1W3T (genome size, 5.20 Mbp; G+C content, 46.0 mol%), isolated from water, was determined to be most closely related to S. hafniensis ATCC-BAA 1207T and S. baltica NCTC 10735T, with digital DNA-DNA hybridization (dDDH) values of 61.7% and 60.4â%, respectively. Strain SP1S2-7T (genome size, 4.26 Mbp; G+C content, 41.5 mol%), isolated from sediments, was observed to be most closely related to S. aestuarii JCM17801T, with a pairwise dDDH value of 33.8â%. Polyphasic analyses of physiological and phenotypic characteristics, in addition to genomic analyses, confirmed that each of these two strains represent distinct, novel species within the genus Shewanella, for which the names Shewanella septentrionalis sp. nov. (type strain SP1W3T=CCUG 76164T=CECT 30651T) and Shewanella holmiensis sp. nov. (type strain SP1S2-7T=CCUG 76165T=CECT 30652T) are proposed.
Asunto(s)
Shewanella , Shewanella/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Filogenia , Técnicas de Tipificación Bacteriana , Agua de Mar/microbiología , AguaRESUMEN
Two Legionella-like strains isolated from hot water distribution systems in 2012 have been characterized phenotypically, biochemically and genomically in terms of DNA relatedness. Both strains, HCPI-6T and EUR-108, exhibited biochemical phenotypic profiles typical of Legionella species. Cells were Gram-negative motile rods which grew on BCYEα agar but not on blood agar and displayed phenotypic characteristics typical of the family Legionellaceae, including a requirement for l-cysteine and testing catalase positive. Both strains were negative for oxidase, urease, nitrate reduction and hippurate negative, and non-fermentative. The major ubiquinone was Q12 (59.4â% HCPI-6T) and the dominant fatty acids were C16â:â1 ω7c (28.4â% HCPI-6T, ≈16â% EUR-108), C16â:â0 iso (≈22.5â% and ≈13â%) and C15â:â0 anteiso (19.5â% and ≈23.5â%, respectively). The percent G+C content of genomic DNA was determined to be 39.3 molâ%. The 16S rRNA gene, mip sequence and comparative genome sequence-based analyses (average nucleotide identity, ANI; digital DNA-DNA hybridization, dDDH; and phylogenomic treeing) demonstrated that the strains represent a new species of the genus Legionella. The analysis based on the 16S rRNA gene sequences showed that the sequence similarities for both strains ranged from 98.8-90.1â% to other members of the genus. The core genome-based phylogenomic tree (protein-concatemer tree based on concatenation of 418 proteins present in single copy) revealed that these two strains clearly form a separate cluster within the genus Legionella. ANI and dDDH values confirmed the distinctiveness of the strains. Based on the genomic, genotypic and phenotypic findings from a polyphasic study, the isolates are considered to represent a single novel species, for which the name Legionella maioricensis sp. nov. is proposed. The type strain is HCPI-6T (=CCUG 75071T=CECT 30569T).
Asunto(s)
Hospitales , Legionella , Filogenia , Microbiología del Agua , Abastecimiento de Agua , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
The recent publication of an alternative nomenclatural code that targets prokaryotes, the Code of Nomenclature of Prokaryotes Described from DNA Sequence Data (SeqCode), raises questions about how to treat names 'validly published' under that code in the International Journal of Systematic and Evolutionary Microbiology (IJSEM). Here, it is reiterated that the IJSEM must function in accordance with the International Code of Nomenclature of Prokaryotes (ICNP). It is also reiterated that the ICNP covers all prokaryotes and that it accordingly assigns a nomenclatural status to all names of prokaryotic taxa. This implies that the ICNP also assigns a status to names that are only 'validly published' under the SeqCode. It follows that the IJSEM must treat such names as not validly published, since 'validly published under the SeqCode' is not a nomenclatural status, under the ICNP. Such names should be marked accordingly as Candidatus names or printed in quotation marks. The same measures would need to be taken by other journals which intend to adhere to the ICNP.
Asunto(s)
Ácidos Grasos , Filogenia , ADN Bacteriano/genética , Composición de Base , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Ácidos Grasos/químicaRESUMEN
To complete the ongoing revision of the International Code of Nomenclature of Prokaryotes, we here propose emendation of Rules 8, 15, 22, 25a, 30(3)(b), 30(4), 34a and Appendix 7. These proposed emendations deal with: the nomenclatural type of taxa above genus; the suitability of names published in supplementary material or in papers published on e-print servers for effective publication; the number of culture collection designations to be included in an effective publication of a name of a species or subspecies to qualify for validation of the name; the kinds of restrictions that may be attached to deposits of type strains; and the question whether elevation of a subspecies to the rank of species or lowering of a species to the rank of subspecies establish new combinations. Some of these emendations change the meaning of the Code while others are mere textual clarifications.
Asunto(s)
Ácidos Grasos , Aprepitant , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/químicaRESUMEN
Although many clinically significant strains belonging to the family Enterobacteriaceae fall into a restricted number of genera and species, there is still a substantial number of isolates that elude this classification and for which proper identification remains challenging. With the current improvements in the field of genomics, it is not only possible to generate high-quality data to accurately identify individual nosocomial isolates at the species level and understand their pathogenic potential but also to analyse retrospectively the genome sequence databases to identify past recurrences of a specific organism, particularly those originally published under an incorrect or outdated taxonomy. We propose a general use of this approach to classify further clinically relevant taxa, i.e., Phytobacter spp., that have so far gone unrecognised due to unsatisfactory identification procedures in clinical diagnostics. Here, we present a genomics and literature-based approach to establish the importance of the genus Phytobacter as a clinically relevant member of the Enterobacteriaceae family.
Asunto(s)
Enterobacteriaceae , Genómica , Enterobacteriaceae/genética , Humanos , Filogenia , Estudios RetrospectivosRESUMEN
Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases.
Asunto(s)
Proteínas Bacterianas/metabolismo , Haemophilus influenzae/metabolismo , Moraxella catarrhalis/metabolismo , Péptidos/metabolismo , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/metabolismo , Biomarcadores/metabolismo , Haemophilus influenzae/aislamiento & purificación , Humanos , Moraxella catarrhalis/aislamiento & purificación , Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/microbiología , Especificidad de la Especie , Staphylococcus aureus/aislamiento & purificación , Streptococcus pneumoniae/aislamiento & purificación , Espectrometría de Masas en TándemRESUMEN
The Editorial Board for the International Code of Nomenclature of Prokaryotes (ICNP) has compiled proposed revisions of the ICNP. As outlined previously (Oren et al., Int J Syst Evol Microbiol 2021;71:004598; https://doi.org/10.1099/ijsem.0.004598) and to comply with Articles 13(b)(4) and 4(d) of the statutes of the International Committee on Systematics of Prokaryotes, a public discussion of the document will start on 1 July 2021, to last for 6 months. Here, we present the procedure for this discussion.
Asunto(s)
Clasificación , Células Procariotas/clasificación , Terminología como AsuntoRESUMEN
Following the International Committee on Systematics of Prokaryotes electronic discussion and vote on proposals to resolve the status of the Cyanobacteria in the prokaryotic nomenclature, we announce here the results of the ballot. We also present the emended versions of General Consideration 5 and Rules 18a, 24a and 30, based on the outcome of the ballot, to be included in the new revision of the International Code of Nomenclature of Prokaryotes.
Asunto(s)
Cianobacterias , Filogenia , Cianobacterias/clasificación , Terminología como AsuntoRESUMEN
Following the International Committee on Systematics of Prokaryotes electronic discussion and vote on proposals to include the rank of phylum in the rules of the International Code of Nomenclature of Prokaryotes, we here announce the results of the ballot. We also present draft versions of the emended Rules 5b, 8, 15 and 22, based on the outcome of the ballot, to be included in the proposal for the preparation of a new revision of the International Code of Nomenclature of Prokaryotes.
Asunto(s)
Filogenia , Células Procariotas/clasificación , Terminología como AsuntoRESUMEN
The International Journal of Systematic and Evolutionary Microbiology (IJSEM) will move to 'true continuous publication' during the first months of 2021 to modernize the workflow and align it with the current online-only nature of the journal. In the new format, articles will be cited using an article number rather than page numbering. The article number will be the Digital Object Identifier (DOI) suffix, i.e., the last six digits of the DOI. Benefits of the new system include streamlining in-house processes, hence, reducing time and costs, and speeding up the publication time of the final 'Version of Record'. Because of the new format of the IJSEM, it is necessary to emend Rule 24b (2) and Note 1 paragraph 3 of Rule 27 of the International Code of Nomenclature of Prokaryotes (ICNP) to regulate matters of priority for papers published after January 2021. We also propose adding another example to Note 2 of Rule 33b to clarify how nomenclatural authorities of names published in the IJSEM from 2021 onward must be cited.
RESUMEN
The Editorial Board of the International Code of Nomenclature of Prokaryotes here explains the proposed procedure towards the production of the next revision of the Prokaryotic Code, to include public discussion of a draft version, to be prepared by the editors, followed by balloting of the members of the International Committee on Systematics of Prokaryotes.
RESUMEN
Botulinum neurotoxin type A (BoNT/A) induces muscle atrophy by cleaving synaptosomal-associated protein 25. Thus, BoNT/A has been actively utilized for the treatment of masseter and gastrocnemius hypertrophy. In this study, INI101 toxin was newly identified from the CCUG 7968 strain, and its therapeutic efficacy was evaluated both in vitro and in vivo. The INI101 toxin showed identical genetic sequence, amino acid sequence, and protein subunit composition to BoNT/A produced from strain Hall A. Electromyography (EMG), and immunofluorescence staining demonstrated that INI101 (at 2 ~ 8 U/rat) effectively blocked the neuromuscular junction with no toxicity in a rat model. The EMG results showed INI101 toxin-induced weight loss and volume reduction of the gastrocnemius, similar to the effects of Botox® (BTX). Histological and immunofluorescence staining was consistent with this EMG result, showing that INI101 toxin caused muscle fiber reduction in the gastrocnemius. Notably, INI101 toxin diffused less into adjacent muscle tissue than BTX, indicating that INI101 toxin may reduce potential side effects due to diffusion into normal tissues. INI101 toxin isolated from the novel strain CCUG 7968 is a newly identified meaningful biopharmaceutical comparable to the conventional BoNT/A in the medical field. KEY POINTS: ⢠Botulinum neurotoxin type A (BoNT/A, INI101) was identified from the CCUG 7968 strain. ⢠INI101 toxin showed similar safety and therapeutic efficacy comparable to conventional BoNT/A both in vitro and in vivo. ⢠INI101 toxin is a meaningful biopharmaceutical comparable to the conventional BoNT/A in the medical field.
Asunto(s)
Toxinas Botulínicas Tipo A , Secuencia de Aminoácidos , Animales , Músculo Esquelético , RatasRESUMEN
The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.
Asunto(s)
Betacoronavirus , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , COVID-19 , Infecciones por Coronavirus , Brotes de Enfermedades , Humanos , Pandemias , Neumonía Viral , SARS-CoV-2RESUMEN
BACKGROUND: Environmental surveillance of antibiotic resistance can contribute towards better understanding and management of human and environmental health. This study applied a combination of long-read Oxford Nanopore MinION and short-read Illumina MiSeq-based sequencing to obtain closed complete genome sequences of two CTX-M-producing multidrug-resistant Escherichia coli strains isolated from blue mussels (Mytilus edulis) in Norway, in order to understand the potential for mobility of the detected antibiotic resistance genes (ARGs). RESULTS: The complete genome sequence of strain 631 (E. coli sequence type 38) was assembled into a circular chromosome of 5.19 Mb and five plasmids (between 98 kb and 5 kb). The majority of ARGs cluster in close proximity to each other on the chromosome within two separate multidrug-resistance determining regions (MDRs), each flanked by IS26 transposases. MDR-1 carries blaTEM-1, tmrB, aac(3)-IId, aadA5, mph(A), mrx, sul1, qacEΔ1 and dfrA17; while MDR-2 harbors aph(3â³)-Ib, aph(6)-Id, blaTEM-1, catA1, tet(D) and sul2. Four identical chromosomal copies of blaCTX-M-14 are located outside these regions, flanked by ISEc9 transposases. Strain 1500 (E. coli sequence type 191) exhibited a circular chromosome of 4.73 Mb and two plasmids (91 kb and 4 kb). The 91 kb conjugative plasmid belonging to IncI1 group carries blaCTX-M-15 and blaTEM-1 genes. CONCLUSION: This study confirms the efficacy of combining Nanopore long-read and Illumina short-read sequencing for determining complete bacterial genome sequences, enabling detection and characterization of clinically important ARGs in the marine environment in Norway, with potential for further dissemination. It also highlights the need for environmental surveillance of antibiotic resistance in low prevalence settings like Norway.
Asunto(s)
Mapeo Cromosómico/métodos , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mytilus edulis/microbiología , Análisis de Secuencia de ADN/métodos , beta-Lactamasas/genética , Animales , Conjugación Genética , Farmacorresistencia Bacteriana Múltiple , Monitoreo del Ambiente , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Tamaño del Genoma , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Familia de Multigenes , Noruega , Filogenia , Plásmidos/genéticaRESUMEN
The taxonomic status of six strains of Acinetobacter obtained from meat samples, collected from supermarkets in Porto, Portugal, was investigated using polyphasic analysis. Partial rpoB sequence similarities lower than 95â% to other Acinetobacter species with validly published names led to the hypothesis that these strains represented novel species. This was confirmed based on comparative multilocus sequence analysis, which included the gyrB, recA and 16S rRNA genes, revealing that these strains represented two coherent lineages that were distinct from each other and from all known species. The names Acinetobacter portensis sp. nov. (comprising four strains) and Acinetobacter guerrae sp. nov. (comprising two strains) are proposed for these novel species. The species status of these two groups was confirmed by low (below 95â%) whole-genome sequence average nucleotide identity values and low (below 70â%) digital DNA-DNA hybridization similarities between the whole-genome sequences of the proposed type strains of each novel species and the representatives of the known Acinetobacter species. Phylogenomic treeing from core genome analysis supported these results. The coherence of each new species lineage was supported by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry differentiation of the species at the protein level, by cellular fatty acid profiles, and by unique and differential combinations of metabolic and physiological properties shared by each novel species. The type strain of A. portensis sp. nov. is AC 877T (=CCUG 68672T=CCM 8789T) and the type strain of A. guerrae sp. nov. is AC 1271T (=CCUG 68674T=CCM 8791T).
Asunto(s)
Acinetobacter/clasificación , Microbiología de Alimentos , Carne/microbiología , Filogenia , Acinetobacter/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Portugal , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
A Gram-stain-negative, microaerophilic, non-motile, rod-shaped bacterium strain designated PMP191FT, was isolated from a human peritoneal tumour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the organism formed a lineage within the family Chitinophagaceae that was distinct from members of the genus Pseudoflavitalea (95.1-95.2â% sequence similarity) and Pseudobacter ginsenosidimutans (94.4â% sequence similarity). The average nucleotide identity values between strain PMP191FT and Pseudoflavitalea rhizosphaerae T16R-265T and Pseudobacter ginsenosidimutans Gsoil 221T was 68.9 and 62.3% respectively. The only respiratory quinone of strain PMP191FT was MK-7 and the major fatty acids were iso-C15â:â0, iso-C15â:â1 G and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The polar lipids consisted of phosphatidylethanolamine and some unidentified amino and glycolipids. The G+C content of strain PMP191FT calculated from the genome sequence was 43.4 mol%. Based on phylogenetic, phenotypic and chemotaxonomic evidence, strain PMP191FT represents a novel species and genus for which the name Parapseudoflavitalea muciniphila gen. nov., sp. nov. is proposed. The type strain is PMP191FT (=DSM 104999T=ATCC BAA-2857T = CCUG 72691T). The phylogenetic analyses also revealed that Pseudobacter ginsenosidimutans shared over 98â% sequence similarly to members of the genus Pseudoflavitalea. However, the average nucleotide identity value between Pseudoflavitalea rhizosphaerae T16R-265T, the type species of the genus and Pseudobacter ginsenosidimutans Gsoil 221T was 86.8â%. Therefore, we also propose that Pseudobacter ginsenosidimutans be reclassified as Pseudoflavitalea ginsenosidimutans comb. nov.