Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pest Manag Sci ; 64(12): 1212-7, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18561151

RESUMEN

BACKGROUND: Fipronil, a phenylpyrazole insecticide, and its oxidative sulfone metabolite are two potential pollutants from treated rice and cotton production. A consequence of these pollutants occurring in surface runoff is degradation of downstream aquatic ecosystems. Utilization of primary intercept drainage ditches as management practices to reduce fipronil concentrations and loads has not been examined. This study used ditch mesocosms planted with monospecific stands of common emergent wetland vegetation to determine if certain plant species were more proficient in fipronil mitigation. RESULTS: Three replicates of four plant species were compared against a non-vegetated control to determine differences in water column outflow concentrations (microg L(-1)) and loads (microg). There were no significant differences between vegetated and control treatments in outflow concentrations (F = 0.35, P = 0.836) and loads (F = 0.35, P = 0.836). The range of fipronil reduction was 28-45% for both concentration and load. Unlike fipronil, fipronil sulfone concentrations and load increased by 96-328%. CONCLUSION: The increase in fipronil sulfone was hypothesized as a direct consequence of oxidation of fipronil within each mesocosm. The type of ditch vegetation had no effect on fipronil reduction. Future research needs to examine initial concentrations and hydraulic retention times to examine potential changes in reduction capacities.


Asunto(s)
Insecticidas/metabolismo , Magnoliopsida/metabolismo , Residuos de Plaguicidas/análisis , Pirazoles/metabolismo , Sulfonas/análisis , Humedales , Agricultura , Biodegradación Ambiental , Insecticidas/análisis , Oxidación-Reducción , Pirazoles/análisis , Contaminantes Químicos del Agua/análisis
2.
Environ Toxicol Chem ; 22(6): 1262-8, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12785582

RESUMEN

Methyl parathion (MeP) was introduced into constructed wetlands for the purpose of assessing the influence of emergent vegetation on transport and toxicity of the pesticide. Two vegetated (90% cover, mainly Juncus effusus) and two nonvegetated wetland cells (each with a water body of 50 x 5.5 x 0.2 m) were each dosed with 6.5 m3 of water containing active ingredient of MeP at 6.6 mg/L associated with suspended soil at 400 mg/L to simulate a storm runoff event. Acute toxicity was assessed by sampling benthic macroinvertebrates at 5, 10, 20, and 40 m from the inlet before and 96 h after contamination and by in situ exposure of Chironomus tentans (Diptera) up to 24 h after contamination. Methyl parathion was detected throughout the nonvegetated wetland cells (70 microg/L at 20 m, 8 microg/L at 40 m), whereas the pesticide was not transported through the vegetated wetland cells (20 microg/L at 20 m, < 0.1 microg/L at 40 m). A three-way analysis of variance using contamination (repeated measure variable), location, and vegetation indicated significant negative effects of contamination on various insect taxa, such as mayfly nymphs and caddisfly larvae. Seven out of the total of 15 species revealed a significant contamination x vegetation effect, with individuals in the vegetated wetlands being less affected. Four species showed a significant contamination x location effect, confirming a higher toxicity in the inlet area of the wetlands. A significant three-way interaction of contamination x vegetation x location was detected in Chironomus sp., which was most strongly affected at the inlet area of the nonvegetated wetland cells. The in situ bioassay employing C. tentans confirmed the positive effect of wetland vegetation on MeP toxicity. These results demonstrate the importance of vegetation for pesticide mitigation in constructed wetlands.


Asunto(s)
Ecosistema , Insecticidas/toxicidad , Metil Paratión/toxicidad , Contaminantes Químicos del Agua/toxicidad , Análisis de Varianza , Animales , Insectos/clasificación , Insectos/efectos de los fármacos , Modelos Lineales , Factores de Tiempo , Pruebas de Toxicidad Aguda/métodos , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA