Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biophys J ; 107(6): 1426-40, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25229150

RESUMEN

Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/química , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Dominio Catalítico , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal , Secuencia Conservada , Humanos , Simulación del Acoplamiento Molecular
2.
Biochim Biophys Acta ; 1834(6): 1215-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23501673

RESUMEN

cAMP signaling is a fundamental cellular process necessary for mediating responses to hormonal stimuli. In contrast to cAMP-dependent activation of protein kinase A (PKA), an important cellular target, far less is known on termination in cAMP signaling, specifically how phosphodiesterases (PDEs) facilitate dissociation and hydrolysis of bound cAMP. In this study, we have probed the dynamics of a ternary complex of PKA and a PDE-RegA with an excess of a PDE-nonhydrolyzable cAMP analog, Sp-cAMPS by amide hydrogen/deuterium exchange mass spectrometry (HDXMS). Our results highlight how HDXMS can be used to monitor reactions together with mapping conformational dynamics of transient signaling complexes. Our results confirm a two-state model for active RegA-mediated dissociation of bound cAMP. Further, our results reveal that Sp-cAMPS and RegA mediate mutually exclusive interactions with the same region of PKA and at specific concentrations of Sp-cAMPS, RegA is capable of blocking Sp-cAMPS reassociation to PKA. This provides a molecular basis for how PDEs modulate levels of intracellular cAMP so that PKA is better suited to responding to fluxes rather than constant levels of cAMP. This study underscores how HDXMS can be a powerful tool for monitoring reactions together with mapping conformational dynamics in signaling proteins. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/química , AMP Cíclico/química , Hidrolasas Diéster Fosfóricas/química , Factores Complejos Ternarios/química , Amidas/química , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Deuterio/química , Medición de Intercambio de Deuterio/métodos , Hidrógeno/química , Espectrometría de Masas/métodos , Simulación de Dinámica Molecular , Hidrolasas Diéster Fosfóricas/metabolismo , Conformación Proteica , Transducción de Señal
3.
Mol Cell Proteomics ; 10(2): M110.002295, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20923972

RESUMEN

Although extensive structural and biochemical studies have provided molecular insights into the mechanism of cAMP-dependent activation of protein kinase A (PKA), little is known about signal termination and the role of phosphodiesterases (PDEs) in regulatory feedback. In this study we describe a novel mode of protein kinase A-anchoring protein (AKAP)-independent feedback regulation between a specific PDE, RegA and the PKA regulatory (RIα) subunit, where RIα functions as an activator of PDE catalysis. Our results indicate that RegA, in addition to its well-known role as a PDE for bulk cAMP in solution, is also capable of hydrolyzing cAMP-bound to RIα. Furthermore our results indicate that binding of RIα activates PDE catalysis several fold demonstrating a dual function of RIα, both as an inhibitor of the PKA catalytic (C) subunit and as an activator for PDEs. Deletion mutagenesis has localized the sites of interaction to one of the cAMP-binding domains of RIα and the catalytic PDE domain of RegA whereas amide hydrogen/deuterium exchange mass spectrometry has revealed that the cAMP-binding site (phosphate binding cassette) along with proximal regions important for relaying allosteric changes mediated by cAMP, are important for interactions with the PDE catalytic domain of RegA. These sites of interactions together with measurements of cAMP dissociation rates demonstrate that binding of RegA facilitates dissociation of cAMP followed by hydrolysis of the released cAMP to 5'AMP. cAMP-free RIα generated as an end product remains bound to RegA. The PKA C-subunit then displaces RegA and reassociates with cAMP-free RIα to regenerate the inactive PKA holoenzyme thereby completing the termination step of cAMP signaling. These results reveal a novel mode of regulatory feedback between PDEs and RIα that has important consequences for PKA regulation and cAMP signal termination.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Quinasas Dependientes de AMP Cíclico/química , AMP Cíclico/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Bovinos , Cinética , Espectrometría de Masas/métodos , Ratones , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis , Espectrometría de Fluorescencia/métodos
4.
Cell Prolif ; 56(1): e13350, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36321378

RESUMEN

OBJECTIVES: Elimination of brain tumour initiating cells (BTICs) is important for the good prognosis of malignant brain tumour treatment. To develop a novel strategy targeting BTICs, we studied NR2E1(TLX) involved self-renewal mechanism of BTICs and explored the intervention means. MATERIALS AND METHODS: NR2E1 and its interacting protein-LSD1 in BTICs were studied by gene interference combined with cell growth, tumour sphere formation, co-immunoprecipitation and chromatin immunoprecipitation assays. NR2E1 interacting peptide of LSD1 was identified by Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) and analysed by in vitro functional assays. The in vivo function of the peptide was examined with intracranial mouse model by transplanting patient-derived BTICs. RESULTS: We found NR2E1 recruits LSD1, a lysine demethylase, to demethylate mono- and di-methylated histone 3 Lys4 (H3K4me/me2) at the Pten promoter and repress its expression, thereby promoting BTIC proliferation. Using Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) method, we identified four LSD1 peptides that may interact with NR2E1. One of the peptides, LSD1-197-211 that locates at the LSD1 SWIRM domain, strongly inhibited BTIC proliferation by promoting Pten expression through interfering NR2E1 and LSD1 function. Furthermore, overexpression of this peptide in human BTICs can inhibit intracranial tumour formation. CONCLUSION: Peptide LSD1-197-211 can repress BTICs by interfering the synergistic function of NR2E1 and LSD1 and may be a promising lead peptide for brain tumour therapy in future.


Asunto(s)
Histona Demetilasas , Péptidos , Animales , Humanos , Ratones , Amidas , Encéfalo/metabolismo , Proliferación Celular , Deuterio , Histona Demetilasas/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Péptidos/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo
5.
J Mol Biol ; 417(5): 468-87, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22326871

RESUMEN

Response regulators (RRs) belong to two-component signaling pathways, widely prevalent in bacteria and lower eukaryotes, for sensing and mediating responses to diverse environmental stress stimuli. RRs are modular proteins, and in most instances, a receiver domain is found connected to diverse effector domain(s). All receiver domains contain a conserved aspartate, which is the site of phosphorylation by an associated histidine kinase. RRs function as phosphorylatable signaling switches whereby histidine-kinase-mediated phosphorylation of RRs alters its output function. It is largely unknown how phosphorylation of the receiver domain triggers activation of distally positioned effector domain(s). Although crystal structures have highlighted differences in conformations from comparisons of snapshots of the unphosphorylated and phosphorylated receiver domains, how this is translated into altered activity of a distal effector domain has remained a mystery. While allosteric relays have been identified within receiver domains by NMR and X-ray crystallography, phosphorylated states of larger multidomain RRs have not yet been characterized. In this study, we have used amide hydrogen/deuterium exchange mass spectrometry to probe the conformational dynamics of a multidomain RR, RegA from Dictyostelium discoideum, by comparisons of the unphosphorylated and phosphorylated states and an activating mutant. Our results reveal allosteric coupling between the site of phosphorylation and the activating mutation. Interestingly, however, the conformations of the effector domains in both instances are distinct. Hydrogen/deuterium exchange mass spectrometry indicates that the 'inactive' and 'active' conformations exist as ensembles of multiple conformations. This is consistent with the 'conformational selection' model for describing phosphorylation-dependent regulation of multidomain RRs.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/química , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Regulación Alostérica , Dictyostelium/química , Espectrometría de Masas , Mutagénesis , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilación , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA