Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Sci Technol ; 55(12): 8432-8438, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34086455

RESUMEN

Tropical urbanized coastal regions are hotspots for the discharge of nutrient-enriched groundwater, which can affect sensitive coastal ecosystems. Here, we investigated how a beach modifies groundwater nutrient loads in southern India (Varkala Beach), using flux measurements and stable isotopes. Fresh groundwater was highly enriched in NO3 from sewage or manure. Submarine groundwater discharge and nearshore groundwater discharge were equally important contributors to coastal NO3 fluxes with 303 mmol NO3 m-1 day-1 in submarine and 334 mmol NO3 m-1 day-1 in nearshore groundwater discharge. However, N/P ratios in nearshore groundwater discharge were up to 3 orders of magnitude greater than that in submarine groundwater, which can promote harmful algae blooms. As groundwater flowed through the beach, N/P ratios decreased toward Redfield ratios due to the removal of 30-50% of NO3 due to denitrification and production of PO4 due to mineralization of organic matter. Overall, tropical beaches can be important natural biogeochemical reactors that attenuate nitrogen pollution and modify N/P ratios in submarine groundwater discharge.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , India , Nitrógeno/análisis , Océanos y Mares , Contaminantes Químicos del Agua/análisis
2.
Proc Natl Acad Sci U S A ; 114(33): 8716-8721, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760954

RESUMEN

Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2 Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

3.
Environ Sci Technol ; 48(9): 4809-16, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24597739

RESUMEN

Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.


Asunto(s)
Dióxido de Carbono/análisis , Tiempo (Meteorología) , Silicatos/química
4.
Mar Pollut Bull ; 199: 115897, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128251

RESUMEN

We assessed ecological quality status (EQS) of coastal waters following claims of increasing sea turtle fibro-papillomatosis (FP) infections in Kenya, a disease hypothesized to be associated with 'poor' ecological health. We established widespread phosphate (P) and silicate (Si) limitation, dissolved ammonium contamination and an increase in potential harmful algal blooming species. Variations in the EQS was established in the sites depending on the indicators used and seasons. Generally, more sites located near hotels, tidal creeks, and estuarine areas showed 'poor', and 'bad' EQS during rainy period compared to dry season. Additionally, 90.1 % of the sites in 'poor' and 'bad' EQS based on dissolved inorganic nitrogen. Low dissolved oxygen, elevated temperature, salinity and ammonium, 'poor' EQS based on DIN, and potential bio-toxin-producing phytoplankton species characterized the FP prevalent areas, specifically during the dry season suggesting environmental stress pointing to the hypothesized connection between ecological and sea turtle health.


Asunto(s)
Compuestos de Amonio , Tortugas , Animales , Fitoplancton , Kenia , Nutrientes , Nitrógeno/análisis , Estaciones del Año , Monitoreo del Ambiente
5.
J Environ Radioact ; 226: 106368, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33077303

RESUMEN

Radon mass balances in lakes can be used to trace transport processes along the sediment-water interface, such as groundwater discharge or pore water exchange. Understanding these transport processes is important, as they can affect the lake water budget, or biogeochemical cycles in lakes due to nutrient inputs. We present here a seasonal 222Rn mass balance of Lake Burullus (Northern Egypt), the second largest lake of Egypt. The Lake receives 222Rn from drainage water and the decay of 226Ra, and loses 222Rn via decay of 222Rn, atmospheric evasion and water discharge into the Mediterranean Sea. However, the mass balance reveals a significant surplus of 222Rn, which cannot be explained by the previously mentioned processes. The 222Rn surplus is especially high during the dry season, and might be explained by groundwater discharge and pore water exchange which transports 222Rn into the lake. Higher 222Rn fluxes into the lake during dry season might be explained by higher bioirrigation rates due to warmer temperatures, or higher groundwater discharge rates due to a higher hydraulic head on land caused by excessive irrigation in adjacent fields. Groundwater discharge and pore water exchange should be investigated in further detail in order to understand if they have effects on water budgets and biogeochemical cycles of Lake Burullus.


Asunto(s)
Monitoreo de Radiación , Radón/análisis , Contaminantes Radiactivos del Agua/análisis , Egipto , Monitoreo del Ambiente , Agua Subterránea , Lagos/química , Mar Mediterráneo , Estaciones del Año , Agua
6.
Nat Commun ; 12(1): 148, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420047

RESUMEN

Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.

7.
Nat Commun ; 11(1): 1260, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152309

RESUMEN

The flow of fresh groundwater may provide substantial inputs of nutrients and solutes to the oceans. However, the extent to which hydrogeological parameters control groundwater flow to the world's oceans has not been quantified systematically. Here we present a spatially resolved global model of coastal groundwater discharge to show that the contribution of fresh groundwater accounts for ~0.6% (0.004%-1.3%) of the total freshwater input and ~2% (0.003%-7.7%) of the solute input for carbon, nitrogen, silica and strontium. However, the coastal discharge of fresh groundwater and nutrients displays a high spatial variability and for an estimated 26% (0.4%-39%) of the world's estuaries, 17% (0.3%-31%) of the salt marshes and 14% (0.1-26%) of the coral reefs, the flux of terrestrial groundwater exceeds 25% of the river flux and poses a risk for pollution and eutrophication.

8.
Sci Data ; 6: 190014, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30747919

RESUMEN

The number of online data repositories is growing and they are becoming increasingly difficult to navigate. Data are scattered among different repositories, or hidden on personal or institutional servers. To access data, users must search extensively and rely on site-specific tools. These hurdles substantially inhibit data findability and accessibility; in particular, those in the long tail of data. We developed an open source web application, Spatial Data Hub, that is a geospatial data index, connected to remote Internet sources. It allows simultaneous display and comparison of disparate datasets on a single map. It aims to promote all data equally and provide the flexibility to connect to any storage system, effectively making long-tail datasets as visible as those in large, established repositories. Its low barrier of entry allows scientists and organizations to easily add data throughout the research process; enhancing transparency, openness and reproducibility. This flexibility and functionality makes Spatial Data Hub a novel platform for researchers to promote their work, develop new hypotheses and create new collaborations.

9.
Sci Total Environ ; 689: 590-601, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31279205

RESUMEN

Submarine groundwater discharge (SGD) can be an important pathway for chemical or biological pollutants from land to the ocean around the world. However, studies on the microbial communities associated with SGD in Southeast Asia, which has been hypothesized as SGD hotspot, remain scarce. In this study, we examined the microbial community composition with 16S rRNA gene sequencing along the hydrological continuum of an SGD site in a tropical urban area of Indonesia. Of the observed parameters in this study, salinity and temperature were the most determinant variables explaining patterns in microbial community composition. The bacterial taxon Burkholderiaceae was predominantly found in low salinity samples, including those from terrestrial groundwater and brackish pore water, while cyanobacteria of the genus Synechococcus sp. CC9902 were indicative of saline SGD and seawater samples. The composition of microbial taxa in each sample pointed to the influence of shallow terrestrial groundwater in the beach pore water, while seawater recirculation dominated the SGD sampling points situated further offshore. We identified taxa containing fecal indicators and potential pathogens at the SGD compartments; however, while a likely explanation, we could not conclude with certainty that SGD was a conduit for these bacteria. Overall, the results from this study show that microbial community analysis can highlight hydrological processes and water quality at the SGD site; thus, they could be useful for environmental policymakers to formulate water management strategies in coastal areas.


Asunto(s)
Agua Subterránea/análisis , Microbiota/fisiología , Agua de Mar/microbiología , Agua Subterránea/microbiología , Hidrología , Indonesia , Microbiota/genética , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Análisis de Secuencia de ARN , Movimientos del Agua
10.
Sci Total Environ ; 627: 1066-1079, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30857079

RESUMEN

Groundwater discharge is known to transport nutrients into estuaries at several locations around the world. However, few studies report groundwater-associated nutrient fluxes from tropical developing regions such as Southeast Asia, even though this area shows the strongest human modifications in the coastal zone worldwide. We investigated groundwater nutrient flux into two streams and estuaries (Awur and Sekumbu Bay) in the urban area of Jepara, Indonesia, and its relation with the land usage surrounding the estuaries. We found that average concentrations of NO3, NH4, and PO4 in Jepara's aquifer reached 145µM, 68µM, and 14µM, respectively, and our results indicate that these were mainly originated from untreated sewage, agriculture, and manure input. Approximately 2200tonNyear-1 and 380tonPyear-1 were removed in the soil and aquifer before the nutrients were discharged into the river. The total groundwater discharge into the river and estuary was estimated to 461×103m3d-1, or up to 42% of the river discharge. Discharge of groundwater-associated NO3 (72×103mold-1), NH4 (34×103mold-1), PO4 (5×103mold-1), and additional surface runoff may contribute to eutrophication and a decrease of nearshore surface water quality. Nutrient concentrations in groundwater, river, and coastal seawater in the Jepara region are similar to those found in major urban areas in Southeast Asia, e.g. Manila and Bangkok, even though Jepara has smaller size and population. Thus, our results indicate that medium populated cities with highly modified regional land use can contribute a significant amount of nutrient discharge in the coastal area and should be included in global assessments of nutrient budget calculation.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Agricultura/estadística & datos numéricos , Eutrofización , Indonesia , Nitrógeno/análisis , Fósforo/análisis
11.
Sci Rep ; 8(1): 2439, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29403050

RESUMEN

Riverine and atmospheric inputs are often considered as the main terrestrial sources of dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicon (DSi) in the ocean. However, the fluxes of nutrients via submarine groundwater discharge (SGD) often exceed riverine inputs in different local and regional scale settings. In this study, we provide a first approximation of global nutrient fluxes to the ocean via total SGD, including pore water fluxes, by combining a global compilation of nutrient concentrations in groundwater and the SGD-derived 228Ra fluxes. In order to avoid overestimations in calculating SGD-derived nutrient fluxes, the endmember value of nutrients in global groundwater was chosen from saline groundwater samples (salinity >10) which showed relatively lower values over all regions. The results show that the total SGD-derived fluxes of DIN, DIP, and DSi could be approximately 1.4-, 1.6-, and 0.7-fold of the river fluxes to the global ocean (Indo-Pacific and Atlantic Oceans), respectively. Although significant portions of these SGD-derived nutrient fluxes are thought to be recycled within sediment-aquifer systems over various timescales, SGD-derived nutrient fluxes should be included in the global ocean budget in order to better understand dynamic interactions at the land-ocean interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA