Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28411220

RESUMEN

In the entomopathogenic bacterium Xenorhabdus nematophila, cell-to-cell variation in the abundance of the Lrp transcription factor leads to virulence modulation; low Lrp levels are associated with a virulent phenotype and suppression of antimicrobial peptides (AMPs) in Manduca sexta insects, while cells that lack lrp or express high Lrp levels are virulence attenuated and elicit AMP expression. To better understand the basis of these phenotypes, we examined X. nematophila strains expressing fixed Lrp levels. Unlike the lrp-null mutant, the high-lrp strain is fully virulent in Drosophila melanogaster, suggesting that these two strains have distinct underlying causes of virulence attenuation in M. sexta Indeed, the lrp-null mutant was defective in cytotoxicity against M. sexta hemocytes relative to that in the high-lrp and low-lrp strains. Further, supernatant derived from the lrp-null mutant but not from the high-lrp strain was defective in inhibiting weight gain when fed to 1st instar M. sexta These data suggest that contributors to the lrp-null mutant virulence attenuation phenotype are the lack of Lrp-dependent cytotoxic and extracellular oral growth inhibitory activities, which may be particularly important for virulence in D. melanogaster In contrast, the high-Lrp strain was sensitive to the antimicrobial peptide cecropin, had a transient survival defect in M. sexta, and had reduced extracellular levels of insecticidal activity, measured by injection of supernatant into 4th instar M. sexta Thus, high-lrp strain virulence attenuation may be explained by its hypersensitivity to M. sexta host immunity and its inability to secrete one or more insecticidal factors.IMPORTANCE Adaptation of a bacterial pathogen to host environments can be achieved through the coordinated regulation of virulence factors that can optimize success under prevailing conditions. In the insect pathogen Xenorhabdus nematophila, the global transcription factor Lrp is necessary for virulence when injected into Manduca sexta or Drosophila melanogaster insect hosts. However, high levels of Lrp, either naturally occurring or artificially induced, cause attenuation of X. nematophila virulence in M. sexta but not D. melanogaster Here, we present evidence suggesting that the underlying cause of high-Lrp-dependent virulence attenuation in M. sexta is hypersensitivity to host immune responses and decreased insecticidal activity and that high-Lrp virulence phenotypes are insect host specific. This knowledge suggests that X. nematophila faces varied challenges depending on the type of insect host it infects and that its success in these environments depends on Lrp-dependent control of a multifactorial virulence repertoire.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , Xenorhabdus/metabolismo , Xenorhabdus/patogenicidad , Animales , Proteínas Bacterianas/genética , Drosophila melanogaster/microbiología , Regulación Bacteriana de la Expresión Génica , Manduca/microbiología , Factores de Transcripción/genética , Virulencia , Xenorhabdus/genética , Xenorhabdus/crecimiento & desarrollo
2.
FASEB J ; 26(10): 4025-34, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22700874

RESUMEN

Prevalence of infection by bacterial symbionts may reflect their interactions with the host and has been shown to be correlated with environmental factors. Yet, it is still unclear whether infection by symbionts is determined by environmental factors affecting the early or imago stage of the host. Here, we identified and localized the symbiont Candidatus Cardinium hertigii (Bacteroidetes) in sympatric Culicoides biting midge species, examined its abundance, and studied its association with environmental factors. The prevalence of adult infection differed, with 50.7% from C. imicola, 31.4% from C. oxystoma, and 0% from C. schultzei gp., although phylogenetic analyses showed that Cardinium in these species is almost identical. In addition, prevalence of infection differed between climate regions, with lowest prevalence in the arid region and highest prevalence in the Mediterranean region. Multivariate linear regression analysis of Cardinium prevalence together with climatic and satellite imagery data-derived environmental variables revealed that infection prevalence is significantly associated with land surface temperature and explained up to 89.7% of infection prevalence variability. These findings suggest that the observed variation of Cardinium infection of the imago stage of Culicoides may be influenced by environmental conditions during the latter's early developmental stages.


Asunto(s)
Bacteroidetes/aislamiento & purificación , Ceratopogonidae/microbiología , Animales , Bacteroidetes/clasificación , Bacteroidetes/genética , Insectos Vectores/microbiología , Datos de Secuencia Molecular , Análisis Multivariante , Filogenia , Reacción en Cadena de la Polimerasa , Temperatura
3.
PLoS One ; 7(3): e33610, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438964

RESUMEN

Culicoides oxystoma (Diptera: Ceratopogonidae) is an important vector species, reported mainly from Asia, with high potential to transmit viral diseases affecting livestock. In Japan, many arboviruses have been isolated from C. oxystoma, suggesting it as a key player in the epidemiology of several Culicoides-borne diseases. Over the years, C. oxystoma has also been reported in the Middle East region, including Israel. In this region, however, C. oxystoma cannot be easily distinguished morphologically from its sibling species included in the Culicoides schultzei complex. We therefore used genomic data for species identification and phylogeny resolution. Phylogenetic analyses based on internal transcribed spacer 1 (ITS-1) of ribosomal DNA and the mitochondrial gene encoding cytochrome oxidase subunit I (COI) showed that C. oxystoma from Israel is closely related to C. oxystoma from Japan. Using differential probing PCR, we showed that C. oxystoma is distributed all over the country, especially in Mediterranean climate regions. Culicoides oxystoma is less common or even absent in arid regions, while the other genetic cluster of C. schultzei complex was found only in the east of the country (mostly arid and semiarid regions). The molecular finding of C. oxystoma in wide geographical regions, together with its high proportion in the general Culicoides population and its vectoring potential, imply that it may be an important vector species in the Middle East.


Asunto(s)
Ceratopogonidae/clasificación , Ceratopogonidae/genética , Insectos Vectores/clasificación , Insectos Vectores/genética , Animales , Secuencia de Bases , Ceratopogonidae/anatomía & histología , Ceratopogonidae/virología , Clima , ADN Espaciador Ribosómico/genética , Complejo IV de Transporte de Electrones/genética , Genética de Población , Genoma de los Insectos , Insectos Vectores/anatomía & histología , Insectos Vectores/virología , Israel , Ganado/virología , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA