Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542136

RESUMEN

HER2-positive breast cancer is associated with aggressive behavior and reduced survival rates. Calcitriol restores the antiproliferative activity of antiestrogens in estrogen receptor (ER)-negative breast cancer cells by re-expressing ERα. Furthermore, calcitriol and its analog, EB1089, enhance responses to standard anti-cancer drugs. Therefore, we aimed to investigate EB1089 effects when added to the combined treatment of lapatinib and antiestrogens on the proliferation of HER2-positive breast cancer cells. BT-474 (ER-positive/HER2-positive) and SK-BR-3 (ER-negative/HER2-positive) cells were pre-treated with EB1089 to modulate ER expression. Then, cells were treated with EB1089 in the presence of lapatinib with or without the antiestrogens, and proliferation, phosphorylation array assays, and Western blot analysis were performed. The results showed that EB1089 restored the antiproliferative response to antiestrogens in SK-BR-3 cells and improved the inhibitory effects of the combination of lapatinib with antiestrogens in the two cell lines. Moreover, EB1089, alone or combined, modulated ERα protein expression and reduced Akt phosphorylation in HER2-positive cells. EB1089 significantly enhanced the cell growth inhibitory effect of lapatinib combined with antiestrogens in HER2-positive breast cancer cells by modulating ERα expression and Akt phosphorylation suppression. These results highlight the potential of this therapeutic approach as a promising strategy for managing HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Calcitriol/análogos & derivados , Humanos , Femenino , Lapatinib/farmacología , Lapatinib/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Calcitriol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Moduladores de los Receptores de Estrógeno/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Antagonistas de Estrógenos/uso terapéutico , Línea Celular Tumoral
2.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762073

RESUMEN

Vasculogenic mimicry (VM), a process in which aggressive cancer cells form tube-like structures, plays a crucial role in providing nutrients and escape routes. Highly plastic tumor cells, such as those with the triple-negative breast cancer (TNBC) phenotype, can develop VM. However, little is known about the interplay between the cellular components of the tumor microenvironment and TNBC cells' VM capacity. In this study, we analyzed the ability of endothelial and stromal cells to induce VM when interacting with TNBC cells and analyzed the involvement of the FGFR/PI3K/Akt pathway in this process. VM was corroborated using fluorescently labeled TNBC cells. Only endothelial cells triggered VM formation, suggesting a predominant role of paracrine/juxtacrine factors from an endothelial origin in VM development. Via immunocytochemistry, qPCR, and secretome analyses, we determined an increased expression of proangiogenic factors as well as stemness markers in VM-forming cancer cells. Similarly, endothelial cells primed by TNBC cells showed an upregulation of proangiogenic molecules, including FGF, VEGFA, and several inflammatory cytokines. Endothelium-dependent TNBC-VM formation was prevented by AZD4547 or LY294002, strongly suggesting the involvement of the FGFR/PI3K/Akt axis in this process. Given that VM is associated with poor clinical prognosis, targeting FGFR/PI3K/Akt pharmacologically may hold promise for treating and preventing VM in TNBC tumors.

3.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35887002

RESUMEN

In highly aggressive tumors, cancer cells may form channel-like structures through a process known as vasculogenic mimicry (VM). VM is generally associated with metastasis, mesenchymal phenotype, and treatment resistance. VM can be driven by antiangiogenic treatments and/or tumor microenvironment-derived factors, including those from the endothelium. Curcumin, a turmeric product, inhibits VM in some tumors, while calcitriol, the most active vitamin D metabolite, exerts potent antineoplastic effects. However, the effect of these natural products on VM in breast cancer remains unknown. Herein, we studied the effect of both compounds on triple-negative breast cancer (TNBC) VM-capacity in a co-culture model. The process of endothelial cell-induced VM in two human TNBC cell lines was robustly inhibited by calcitriol and partially by curcumin. Calcitriol promoted TNBC cells' morphological change from spindle-like to cobblestone-shape, while curcumin diminished VM 3D-structure. Notably, the treatments dephosphorylated several active kinases, especially those involved in the PI3K/Akt pathway. In summary, calcitriol and curcumin disrupted endothelium-induced VM in TNBC cells partially by PI3K/Akt inactivation and mesenchymal phenotype inhibition. Our results support the possible use of these natural compounds as adjuvants for VM inactivation in patients with malignant tumors inherently capable of forming VM, or those with antiangiogenic therapy, warranting further in vivo studies.


Asunto(s)
Calcitriol , Curcumina , Endotelio Vascular , Neoplasias de la Mama Triple Negativas , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Calcitriol/farmacología , Calcitriol/uso terapéutico , Línea Celular Tumoral , Curcumina/farmacología , Curcumina/uso terapéutico , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
4.
J Steroid Biochem Mol Biol ; 223: 106132, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35659529

RESUMEN

Fibroblast growth factor receptor (FGFR) overamplification/activation in cancer leads to increased cell proliferation. AZD4547, a FGFR selective inhibitor, hinders breast cancer cells growth. Although luminal B breast tumors may respond to chemotherapy and endocrine therapy, this subtype is associated with poor prognosis, inadequate response and/or acquired drug resistance. Calcitriol, the vitamin D most active metabolite, exerts anti-neoplastic effects and enhances chemotherapeutic drugs activity. In this study, we sought to decrease the concentration of AZD4547 needed to inhibit the luminal-B breast cancer cell line BT-474 proliferation by its combination with calcitriol. Anti-proliferative inhibitory concentrations, combination index and dose-reduction index were analyzed from Sulforhodamine B assays. Western blot and qPCR were used to study FGFR molecular targets. The compound's ability to inhibit BT-474 cells tumorigenic capacity was assessed by tumorspheres formation. Results: BT-474 cells were dose-dependently growth-inhibited by calcitriol and AZD4547 (IC50 = 2.9 nM and 3.08 µM, respectively). Calcitriol at 1 nM synergistically improved AZD4547 antiproliferative effects, allowing a 2-fold AZD4547 dose-reduction. Mechanistically, AZD4547 downregulated p-FGFR1, p-Akt and tumorsphere formation. Calcitriol also decreased tumorspheres, while induced cell differentiation. Both compounds inhibited MYC and CCND1 expression, as well as ALDH, a stemness marker that positively correlated with FGFR1 and negatively with VDR expression in breast cancer transcriptomic data. In conclusion, the drugs impaired self-aggregation capacity, reduced stemness features, induced cell-differentiation and when combined, synergistically inhibited cell proliferation. Overall, our results suggest that calcitriol, at low pharmacological doses, may be a suitable candidate to synergize AZD4547 effects in luminal B breast tumors, allowing to reduce dose and adverse effects.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Benzamidas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Calcitriol/farmacología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Piperazinas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles
5.
Cells ; 10(7)2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34359928

RESUMEN

In solid tumors, vasculogenic mimicry (VM) is the formation of vascular structures by cancer cells, allowing to generate a channel-network able to transport blood and tumor cells. While angiogenesis is undertaken by endothelial cells, VM is assumed by cancer cells. Besides the participation of VM in tumor neovascularization, the clinical relevance of this process resides in its ability to favor metastasis and to drive resistance to antiangiogenic therapy. VM occurs in many tumor types, including breast cancer, where it has been associated with a more malignant phenotype, such as triple-negative and HER2-positive tumors. The latter may be explained by known drivers of VM, like hypoxia, TGFB, TWIST1, EPHA2, VEGF, matrix metalloproteinases, and other tumor microenvironment-derived factors, which altogether induce the transformation of tumor cells to a mesenchymal phenotype with a high expression rate of stemness markers. This review analyzes the current literature in the field, including the participation of some microRNAs and long noncoding RNAs in VM-regulation and tumorigenesis of breast cancer. Considering the clinical relevance of VM and its association with the tumor phenotype and clinicopathological parameters, further studies are granted to target VM in the clinic.


Asunto(s)
Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/patología , Imitación Molecular , Neovascularización Patológica/patología , Animales , Neoplasias de la Mama/genética , Femenino , Humanos , Imitación Molecular/genética , Fenotipo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Microambiente Tumoral/genética
6.
J Steroid Biochem Mol Biol ; 214: 105979, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34438041

RESUMEN

Chemotherapy is a standard therapeutic option for triple-negative breast cancer (TNBC); however, its effectiveness is often compromised by drug-related toxicity and resistance development. Herein, we aimed to evaluate whether an improved antineoplastic effect could be achieved in vitro and in vivo in TNBC by combining dovitinib, a multi-kinase inhibitor, with calcitriol, a natural anticancer hormone. In vitro, cell proliferation and cell-cycle distribution were studied by sulforhodamine B-assays and flow cytometry. In vivo, dovitinib/calcitriol effects on tumor growth, angiogenesis, and endothelium activation were evaluated in xenografted mice by caliper measures, Itgb3/VEGFR2-immunohistochemistry and 99mTc-Ethylenediamine-N,N-diacetic acid/hydrazinonicotinamyl-Glu[cyclo(Arg-Gly-Asp-D-Phe-Lys)]2 (99mTc-RGD2)-tumor uptake. The drug combination elicited a synergistically improved antiproliferative effect in TNBC-derived cells, which allowed a 7-fold and a 3.3-fold dovitinib dose-reduction in MBCDF-Tum and HCC-1806 cells, respectively. Mechanistically, the co-treatment induced a cell cycle profile suggestive of cell death and DNA damage (accumulation of cells in SubG1, S, and G2/M phases), increased the number of multinucleated cells and inhibited tumor growth to a greater extent than each compound alone. Tumor uptake of 99mTc-RGD2 was reduced by dovitinib, suggesting angiogenesis inhibition, which was corroborated by decreased endothelial cell growth, tumor-vessel density and VEGFR2 expression. In summary, calcitriol synergized dovitinib anticancer effects in vitro and in vivo, allowing for a significant dose-reduction of dovitinib while maintaining its antiproliferative potency. Our results suggest the beneficial convergence of independent antitumor mechanisms of dovitinib and calcitriol to inhibit TNBC-tumor growth.


Asunto(s)
Antineoplásicos/farmacología , Bencimidazoles/farmacología , Calcitriol/farmacología , Oligopéptidos/química , Quinolonas/farmacología , Tecnecio/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Bencimidazoles/administración & dosificación , Calcitriol/administración & dosificación , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Concentración 50 Inhibidora , Integrina beta3/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neovascularización Patológica , Quinolonas/administración & dosificación , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
Cancers (Basel) ; 11(11)2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698751

RESUMEN

Calcitriol is a multitarget anticancer hormone; however, its effects on angiogenesis remain contradictory. Herein, we tested whether the antiangiogenic phytochemicals curcumin or resveratrol improved calcitriol antitumorigenic effects in vivo. Triple-negative breast cancer tumoral cells (MBCDF-T) were xenografted in nude mice, maintaining treatments for 3 weeks. Tumor onset, volume and microvessel density were significantly reduced in mice coadministered with calcitriol and curcumin (Cal+Cur). Vessel count was also reduced in mice simultaneously treated with calcitriol and resveratrol (Cal+Rsv). Cal+Cur and Cal+Rsv treatments resulted in less tumor activated endothelium, as demonstrated by decreased tumor uptake of integrin-targeted biosensors in vivo. The renal gene expression of Cyp24a1 and Cyp27b1 suggested increased calcitriol bioactivity in the combined regimens. In vitro, the phytochemicals inhibited both MBCDF-T and endothelial cells proliferation, while potentiated calcitriol's ability to reduce MBCDF-T cell-growth and endothelial cells migration. Resveratrol induced endothelial cell death, as deduced by increased sub-G1 cells accumulation, explaining the reduced tumor vessel number in resveratrol-treated mice, which further diminished when combined with calcitriol. In conclusion, the concomitant administration of calcitriol with curcumin or resveratrol synergistically promoted anticancer effects in vitro and in vivo in human mammary tumor cells. Whereas the results suggest different mechanisms of action of the phytochemicals when coadministered with calcitriol, the converging biological effect was inhibition of tumor neoangiogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA