RESUMEN
Thanks to technical progress and the availability of virtual data, sex estimation methods as part of a biological profile are undergoing an inevitable evolution. Further reductions in subjectivity, but potentially also in measurement errors, can be brought by approaches that automate the extraction of variables. Such automatization also significantly accelerates and facilitates the specialist's work. The aim of this study is (1) to apply a previously proposed algorithm (Kuchar et al. 2021) to automatically extract 10 variables used for the DSP2 sex estimation method, and (2) to test the robustness of the new automatic approach in a current heterogeneous population. For the first aim, we used a sample of 240 3D scans of pelvic bones from the same individuals, which were measured manually for the DSP database. For the second aim a sample of 108 pelvic bones from the New Mexico Decedent Image Database was used. The results showed high agreement between automatic and manual measurements with rTEM below 5% for all dimensions except two. The accuracy of final sex estimates based on all 10 variables was excellent (error rate 0.3%). However, we observed a higher number of undetermined individuals in the Portuguese sample (25% of males) and the New Mexican sample (36.5% of females). In conclusion, the procedure for automatic dimension extraction was successfully applied both to a different type of data and to a heterogeneous population.
Asunto(s)
Algoritmos , Antropología Forense , Imagenología Tridimensional , Huesos Pélvicos , Determinación del Sexo por el Esqueleto , Humanos , Determinación del Sexo por el Esqueleto/métodos , Masculino , Femenino , Huesos Pélvicos/diagnóstico por imagen , Antropología Forense/métodos , Adulto , Persona de Mediana Edad , Anciano , Adulto Joven , Portugal , Anciano de 80 o más AñosRESUMEN
We report aircraft observations of extreme levels of HCl and the dihalogens Cl2, Br2, and BrCl in an industrial plume near the Great Salt Lake, Utah. Complete depletion of O3 was observed concurrently with halogen enhancements as a direct result of photochemically produced halogen radicals. Observed fluxes for Cl2, HCl, and NOx agreed with facility-reported emissions inventories. Bromine emissions are not required to be reported in the inventory, but are estimated as 173 Mg year-1 Br2 and 949 Mg year-1 BrCl, representing a major uncounted oxidant source. A zero-dimensional photochemical box model reproduced the observed O3 depletions and demonstrated that bromine radical cycling was principally responsible for the rapid O3 depletion. Inclusion of observed halogen emissions in both the box model and a 3D chemical model showed significant increases in oxidants and particulate matter (PM2.5) in the populated regions of the Great Salt Lake Basin, where winter PM2.5 is among the most severe air quality issues in the U.S. The model shows regional PM2.5 increases of 10%-25% attributable to this single industrial halogen source, demonstrating the impact of underreported industrial bromine emissions on oxidation sources and air quality within a major urban area of the western U.S.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Pérdida de Ozono , Ozono , Contaminantes Atmosféricos/análisis , Halógenos , Ozono/análisis , Bromo , Lagos , Contaminación del Aire/análisis , Material Particulado/análisis , OxidantesRESUMEN
Indoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources. Use of a chlorine-based cleaner was a source of several photolabile reactive chlorine compounds, including ClNO2 and Cl2. During cleaning events, photolysis rates for these two compounds were up to 0.0023 pptv min-1, acting as a source of chlorine atoms even in this low-light indoor environment. Unrelated to cleaning events, elevated ClNO2 was often observed during daytime and lost to ventilation. The nitrate radical (NO3), which is rapidly photolyzed outdoors during daytime, may persist in low-light indoor environments. With negligible photolysis, loss rates of NO3 indoors were dominated by bimolecular reactions. At times with high NO2 and O3 ventilated from outdoors, N2O5 was observed. Elevated ClNO2 measured concurrently suggests the formation through heterogeneous reactions, acting as an additional source of reactive chlorine within the athletic facility and outdoors.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Deportes , Humanos , Cloro , Nitrógeno , Contaminantes Atmosféricos/análisis , Halógenos , ClorurosRESUMEN
We aimed to describe facial directional asymmetry (DA) in individuals with different manifestations of laterality. Due to the overlap between brain and face development, a relationship between the manifestation of brain laterality and DA is hypothesised. These findings could clarify the relationship between the brain and facial phenotype and help to plan facial or oral motor rehabilitation. The DA of 163 healthy individuals was assessed by two complementary 3D methods: landmark and polygonal surface analysis using colour-coded maps. Handedness was assessed using the Edinburgh Handedness Inventory, while chewing side and eye preferences were self-reported. The results showed a similar DA pattern regardless of sex and laterality (the right-sided protrusion of the forehead, nose, lips, and chin) and a slightly curved C-shape of the midline in landmark analysis. A relationship between lateralized behaviours and DA was found only in males, in females the DA pattern was more homogenous. Right-handed individuals and right-side chewers showed a protrusion of the right hemiface. Males, left-handed and left-side chewers, manifested a protrusion of the left lateral hemiface. We suggest that these specific differences in males may be due to their typically higher level of brain asymmetry. No apparent relationship was found between eyedness and DA.
Asunto(s)
Asimetría Facial , Lateralidad Funcional , Masticación , Humanos , Masculino , Femenino , Lateralidad Funcional/fisiología , Adulto , Masticación/fisiología , Asimetría Facial/fisiopatología , Adulto Joven , Cara/fisiología , Persona de Mediana Edad , AdolescenteRESUMEN
BACKGROUND: Precise positioning of the acetabular component during total hip replacement is the key to achieving optimal implant function and ensuring long-term patient comfort. However, different anatomical variations, degenerative changes, dysplasia, and other diseases make it difficult. In this study, we discuss a method based on the three-dimensional direction of the transverse ligament, predicting native acetabular anteversion with higher accuracy. METHODS: Angular positions of the acetabulum and direction of the transverse ligament were automatically calculated from routine computed tomography data of 270 patients using a registration algorithm. The relationship between acetabular angles and ligament direction and their relationship with sex, age, and pelvic tilt were sought. These relationships were then modelled using multilinear regression. RESULTS: Including the direction of the transverse ligament in the sagittal and transverse planes as a regressor in the multilinear model explained the variation in acetabular anteversion (R2 = 0.76 for men, R2 = 0.63 for women; standard deviation in prediction: men, 3.92° and women, 4.00°). CONCLUSIONS: The results indicate that the ligament was suitable as a guidance structure almost insensitive to the ligament in the sagittal and transverse planes must be considered. Estimation based on the direction in only 1 plane was not sufficiently accurate. The operative acetabular inclination was not correlated with the direction of the ligament. The correlations were higher in men than in women.