Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phycol ; 60(2): 554-573, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38402562

RESUMEN

Algal blooms are increasing worldwide, driven by elevated nutrient inputs. However, it is still unknown how tropical benthic algae will respond to heatwaves, which are expected to be more frequent under global warming. In the present study, a multifactorial experiment was carried out to investigate the potential synergistic effects of increased ammonium inputs (25 µM, control at 2.5 µM) and a heatwave (31°C, control at 25°C) on the growth and physiology (e.g., ammonium uptake, nutrient assimilation, photosynthetic performance, and pigment concentrations) of two bloom-forming algal species, Cladophoropsis sp. and Laurencia sp. Both algae positively responded to elevated ammonium concentrations with higher growth and chlorophyll a and lutein concentrations. Increased temperature was generally a less important driver, interacting with elevated ammonium by decreasing the algaes' %N content and N:P ratios. Interestingly, this stress response was not captured by the photosynthetic yield (Fv/Fm) nor by the carbon assimilation (%C), which increased for both algae at higher temperatures. The negative effects of higher temperature were, however, buffered by nutrient inputs, showing an antagonistic response in the combined treatment for the concentration of VAZ (violaxanthin, antheraxanthin, zeaxanthin) and thalli growth. Ammonium uptake was initially higher for Cladophoropsis sp. and increased for Laurencia sp. over experimental time, showing an acclimation capacity even in a short time interval. This experiment shows that both algae benefited from increased ammonium pulses and were able to overcome the otherwise detrimental stress of increasingly emerging temperature anomalies, which provide them a strong competitive advantage and might support their further expansions in tropical marine systems.


Asunto(s)
Compuestos de Amonio , Chlorophyta , Laurencia , Clorofila A , Eutrofización
2.
J Exp Bot ; 74(1): 472-488, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272111

RESUMEN

Understanding species-specific trait responses under future global change scenarios is of importance for conservation efforts and to make informed decisions within management projects. The combined and single effects of seawater acidification and warmer average temperature were investigated by means of the trait responses of Cymodocea serrulata, a tropical seagrass, under experimental conditions. After a 35 d exposure period, biochemical, morphological, and photo-physiological trait responses were measured. Overall, biochemical traits mildly responded under the individual exposure to high temperature and increasing pCO2 values. The response of C. serrulata was limited to a decrease in %C and an increase in the sucrose content in the rhizome under the high temperature treatment, 32 °C. This suggests that this temperature was lower than the maximum tolerance limit for this species. Increasing pCO2 levels increased %C in the rhizome, and also showed a significant increase in leaf δ13C values. The effects of all treatments were sublethal; however, small changes in their traits could affect the ecosystem services they provide. In particular, changes in tissue carbon concentrations may affect carbon storage capacity, one key ecosystem service. The simultaneous study of different types of trait responses contributes to establish a holistic framework of seagrass ecosystem health under climate change.


Asunto(s)
Alismatales , Agua de Mar , Agua de Mar/química , Ecosistema , Alismatales/fisiología , Calor , Temperatura , Carbono , Dióxido de Carbono , Concentración de Iones de Hidrógeno
3.
Front Plant Sci ; 14: 1088643, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021321

RESUMEN

In the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., "environmental filtering" (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide.

4.
Front Plant Sci ; 12: 709257, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795681

RESUMEN

Tropical seagrass meadows are formed by an array of seagrass species that share the same space. Species sharing the same plot are competing for resources, namely light and inorganic nutrients, which results in the capacity of some species to preempt space from others. However, the drivers behind seagrass species competition are not completely understood. In this work, we studied the competitive interactions among tropical seagrass species of Unguja Island (Zanzibar, Tanzania) using a trait-based approach. We quantified the abundance of eight seagrass species under different trophic states, and selected nine traits related to light and inorganic nutrient preemption to characterize the functional strategy of the species (leaf maximum length and width, leaves per shoot, leaf mass area, vertical rhizome length, shoots per meter of ramet, rhizome diameter, roots per meter of ramet, and root maximum length). From the seagrass abundance we calculated the probability of space preemption between pairs of seagrass species and for each individual seagrass species under the different trophic states. Species had different probabilities of space preemption, with the climax species Thalassodendron ciliatum, Enhalus acoroides, Thalassia hemprichii, and the opportunistic Cymodocea serrulata having the highest probability of preemption, while the pioneer and opportunistic species Halophila ovalis, Syringodium isoetifolium, Halodule uninervis, and Cymodocea rotundata had the lowest. Traits determining the functional strategy showed that there was a size gradient across species. For two co-occurring seagrass species, probability of preemption was the highest for the larger species, it increased as the size difference between species increased and was unaffected by the trophic state. Competitive interactions among seagrass species were asymmetrical, i.e., negative effects were not reciprocal, and the driver behind space preemption was determined by plant size. Seagrass space preemption is a consequence of resource competition, and the probability of a species to exert preemption can be calculated using a trait-based approach.

5.
Front Plant Sci ; 11: 571363, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224162

RESUMEN

Seagrass meadows are declining globally. The decrease of seagrass area is influenced by the simultaneous occurrence of many factors at the local and global scale, including nutrient enrichment and climate change. This study aims to find out how increasing temperature and nutrient enrichment affect the morphological, biochemical and physiological responses of three coexisting tropical species, Thalassia hemprichii, Cymodocea serrulata and Halophila stipulacea. To achieve these aims, a 1-month experiment under laboratory conditions combining two temperature (maximum ambient temperature and current average temperature) and two nutrient (high and low N and P concentrations) treatments was conducted. The results showed that the seagrasses were differentially affected by all treatments depending on their life-history strategies. Under higher temperature treatments, C. serrulata showed photo-acclimation strategies, while T. hemprichii showed decreased photo-physiological performance. In contrast, T. hemprichii was resistant to nutrient over-enrichment, showing enhanced nutrient content and physiological changes, but C. serrulata suffered BG nutrient loss. The limited response of H. stipulacea to nutrient enrichment or high temperature suggests that this seagrass is a tolerant species that may have a dormancy state with lower photosynthetic performance and smaller-size individuals. Interaction between both factors was limited and generally showed antagonistic effects only on morphological and biochemical traits, but not on physiological traits. These results highlight the different effects and strategies co-inhabiting seagrasses have in response to environmental changes, showing winners and losers of a climate change scenario that may eventually cause biodiversity loss. Trait responses to these stressors could potentially make the seagrasses weaker to cope with following events, due to BG biomass or nutrient loss. This is of importance as biodiversity loss in tropical seagrass ecosystems could change the overall effectiveness of ecosystem functions and services provided by the seagrass meadows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA