Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(35): 14206-11, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891348

RESUMEN

Neurons in the CNS of higher vertebrates lose their ability to regenerate their axons at a stage of development that coincides with peak circulating thyroid hormone (T(3)) levels. Here, we examined whether this peak in T(3) is involved in the loss of axonal regenerative capacity in Purkinje cells (PCs). This event occurs at the end of the first postnatal week in mice. Using organotypic culture, we found that the loss of axon regenerative capacity was triggered prematurely by early exposure of mouse PCs to T(3), whereas it was delayed in the absence of T(3). Analysis of mutant mice showed that this effect was mainly mediated by the T(3) receptor α1. Using gain- and loss-of-function approaches, we also showed that Krüppel-like factor 9 was a key mediator of this effect of T(3). These results indicate that the sudden physiological increase in T(3) during development is involved in the onset of the loss of axon regenerative capacity in PCs. This loss of regenerative capacity might be part of the general program triggered by T(3) throughout the body, which adapts the animal to its postnatal environment.


Asunto(s)
Cerebelo/fisiología , Factores de Transcripción de Tipo Kruppel/genética , Regeneración Nerviosa/fisiología , Células de Purkinje/fisiología , Triyodotironina/metabolismo , Adaptación Fisiológica/fisiología , Animales , Axones/fisiología , Axotomía , Cerebelo/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Lentivirus/genética , Masculino , Ratones , Ratones Noqueados , Regeneración Nerviosa/efectos de los fármacos , Técnicas de Cultivo de Órganos , Embarazo , Células de Purkinje/efectos de los fármacos , Receptores de Hormona Tiroidea/metabolismo , Triyodotironina/farmacología
2.
J Neurosci ; 33(22): 9546-62, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23719821

RESUMEN

Neuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor RORα (retinoic acid-related orphan receptor α) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood. To identify the role of RORα in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs between postnatal days 10-21. Up to 14 d of age, differences between mutant and control PCs were not detectable: both were mono-innervated by climbing fibers (CFs) extending along their well-developed dendrites with spiny branchlets. By week 4, mutant mice were ataxic, some PCs had died, and remaining PC soma and dendrites were atrophic, with almost complete disappearance of spiny branchlets. The innervation pattern of surviving RORα-deleted PCs was abnormal with several immature characteristics. Notably, multiple functional CF innervation was reestablished on these mature PCs, simultaneously with the relocation of CF contacts to the PC soma and their stem dendrite. This morphological modification of CF contacts could be induced even later, using lentivirus-mediated depletion of rora from adult PCs. These data show that the late postnatal expression of RORα cell-autonomously regulates the maintenance of PC dendritic complexity, and the CF innervation status of the PC (dendritic vs somatic contacts, and mono-innervation vs multi-innervation). Thus, the differentiation state of adult neurons is under the control of transcription factors; and in their absence, adult neurons lose their mature characteristics and acquire some characteristics of an earlier developmental stage.


Asunto(s)
Fibras Nerviosas/fisiología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/fisiología , Células de Purkinje/fisiología , Animales , Axones/fisiología , Axones/ultraestructura , Conducta Animal/fisiología , Recuento de Células , Diferenciación Celular/genética , Diferenciación Celular/fisiología , ADN/genética , Factores de Transcripción Forkhead/genética , Vectores Genéticos , Humanos , Inmunohistoquímica , Relaciones Interpersonales , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Fuerza Muscular/genética , Fuerza Muscular/fisiología , Mutación/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Reacción en Cadena de la Polimerasa , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Proteínas Represoras/genética , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética
3.
Neurobiol Dis ; 46(3): 710-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22426389

RESUMEN

Limiting the development of secondary damage represents one of the major goals of neuroprotective therapies after spinal cord injury. Here, we demonstrate that specific JNK inhibition via a single intraperitoneal injection of the cell permeable peptide D-JNKI1 6h after lesion improves locomotor recovery assessed by both the footprint and the BMS tests up to 4 months post-injury in mice. JNK inhibition prevents c-jun phosphorylation and caspase-3 cleavage, has neuroprotective effects and results in an increased sparing of white matter at the lesion site. Lastly, D-JNKI1 treated animals show a lower increase of erythrocyte extravasation and blood brain barrier permeability, thus indicating protection of the vascular system. In total, these results clearly point out JNK inhibition as a promising neuroprotective strategy for preventing the evolution of secondary damage after spinal cord injury.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Locomoción/efectos de los fármacos , Fármacos Neuroprotectores , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/fisiología , Western Blotting , Caspasa 3/metabolismo , Miembro Posterior/fisiología , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Inmunohistoquímica , Inyecciones Intraperitoneales , Masculino , Ratones , Fibras Nerviosas/fisiología , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas c-jun/metabolismo , Serotonina/fisiología , Médula Espinal/patología , Traumatismos de la Médula Espinal/enzimología , Traumatismos de la Médula Espinal/fisiopatología
4.
Cell Rep ; 34(3): 108654, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33472083

RESUMEN

In humans, execution of unimanual movements requires lateralized activation of the primary motor cortex, which then transmits the motor command to the contralateral hand through the crossed corticospinal tract (CST). Mutations in NTN1 alter motor control lateralization, leading to congenital mirror movements. To address the role of midline Netrin-1 on CST development and subsequent motor control, we analyze the morphological and functional consequences of floor plate Netrin-1 depletion in conditional knockout mice. We show that depletion of floor plate Netrin-1 in the brainstem critically disrupts CST midline crossing, whereas the other commissural systems are preserved. The only associated defect is an abnormal entry of CST axons within the inferior olive. Alteration of CST midline crossing results in functional ipsilateral projections and is associated with abnormal symmetric movements. Our study reveals the role of Netrin-1 in CST development and describes a mouse model recapitulating the characteristics of human congenital mirror movements.


Asunto(s)
Axones/metabolismo , Trastornos del Movimiento/metabolismo , Netrina-1/metabolismo , Tractos Piramidales/metabolismo , Animales , Axones/patología , Ratones , Trastornos del Movimiento/patología , Tractos Piramidales/patología
5.
Sci Rep ; 7(1): 410, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28341853

RESUMEN

DCC, a NETRIN-1 receptor, is considered as a cell-autonomous regulator for midline guidance of many commissural populations in the central nervous system. The corticospinal tract (CST), the principal motor pathway for voluntary movements, crosses the anatomic midline at the pyramidal decussation. CST fails to cross the midline in Kanga mice expressing a truncated DCC protein. Humans with heterozygous DCC mutations have congenital mirror movements (CMM). As CMM has been associated, in some cases, with malformations of the pyramidal decussation, DCC might also be involved in this process in human. Here, we investigated the role of DCC in CST midline crossing both in human and mice. First, we demonstrate by multimodal approaches, that patients with CMM due to DCC mutations have an increased proportion of ipsilateral CST projections. Second, we show that in contrast to Kanga mice, the anatomy of the CST is not altered in mice with a deletion of DCC in the CST. Altogether, these results indicate that DCC controls CST midline crossing in both humans and mice, and that this process is non cell-autonomous in mice. Our data unravel a new level of complexity in the role of DCC in CST guidance at the midline.


Asunto(s)
Orientación del Axón , Receptor DCC/fisiología , Tractos Piramidales/patología , Tractos Piramidales/fisiopatología , Adulto , Anciano , Animales , Axones/metabolismo , Cuerpo Calloso/metabolismo , Receptor DCC/genética , Potenciales Evocados Motores , Femenino , Mano/inervación , Mano/fisiopatología , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Corteza Motora/fisiopatología , Movimiento , Neocórtex/metabolismo , Estimulación Magnética Transcraneal
6.
J Clin Invest ; 127(11): 3923-3936, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28945198

RESUMEN

Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.


Asunto(s)
Trastornos del Movimiento/genética , Netrina-1/genética , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Células HEK293 , Células HeLa , Heterocigoto , Humanos , Masculino , Ratones , Mutación Missense , Linaje , Eliminación de Secuencia
7.
PLoS One ; 10(3): e0121096, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25822785

RESUMEN

Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.


Asunto(s)
Medios de Cultivo/química , Técnicas de Preparación Histocitológica/métodos , Microscopía Confocal/métodos , Refracción Ocular , Fluorescencia , Aumento de la Imagen/métodos , Relación Señal-Ruido
8.
J Neurocytol ; 31(8-9): 633-47, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-14501204

RESUMEN

Adult rat Purkinje cells are extremely resistant to axotomy and, although they lack spontaneous regeneration, are able to sprout. Axon sprouting is a late process that occurs mainly 6 to 18 months after the lesion and results from an interplay between Purkinje cell intrinsic properties and chemical remodeling of the glial scar. To better appraise the role of the local environment in the late sprouting, we performed new axotomy experiments in mice. In this species, unlike the rat, there is no cavitation because the post-lesional necrotic tissue is invaded by astrocytes and incorporated into the glial scar. In this scarring tissue, chondroitin sulfate proteoglycans (CS-PGs) and PSA-NCAM are present one week after the lesion, but the time courses of their expression differ: the former are transiently expressed and rapidly disappears (by one month), thus preventing early sprouting and providing a negative spatiotemporal correlation with the late sprouting. PSA-NCAM expression, which is maintained up till 12 months, is by itself not sufficient to attract the sprouts, since the core of the glial scar--which exhibits high level of PSA-NCAM--is always devoid of them. Finally, by using a double experimental approach (lesion and graft) aimed at providing a permissive environment to the terminal bulbs of axotomized Purkinje cells, we show that the presence of grafted cerebellum at the lesion site neither changes the time course of the sprouting nor enhances the Purkinje cell axonal regeneration. Nevertheless, these experiments have revealed a new type of altered Purkinje cells, the "irritated" Purkinje cells with a high potentiality for axon sprouting.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Conos de Crecimiento/ultraestructura , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/citología , Animales , Astrocitos/citología , Astrocitos/fisiología , Axotomía , Trasplante de Tejido Encefálico , Comunicación Celular/fisiología , Cerebelo/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Femenino , Gliosis/fisiopatología , Supervivencia de Injerto/fisiología , Conos de Crecimiento/metabolismo , Ratones , Microglía/citología , Microglía/fisiología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Células de Purkinje/metabolismo , Ácidos Siálicos/metabolismo
9.
Eur J Neurosci ; 20(5): 1161-76, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15341588

RESUMEN

The scarring process occurring after adult central nervous system injury and the subsequent increase in the expression of certain extracellular matrix molecules are known to contribute to the failure of axon regeneration. This study provides an immunohistochemical analysis of temporal changes (8 days to 1 year) in the cellular and molecular response of the Swiss mouse spinal cord to a dorsal hemisection and its correlation with the axonal growth properties of a descending pathway, the serotoninergic axons. In this lesion model, no cavity forms at the centre of the lesion. Instead, a dense fibronectin-positive tissue matrix occupies the centre of the lesion, surrounded by a glial scar mainly constituted by reactive astrocytes. NG2 proteoglycan and tenascin-C, potential axon growth inhibitors, are constantly associated with the central region. In the glial scar, tenascin-C is never observed and the expression of chondroitin sulphate proteoglycans (revealed with CS-56 and anti-NG2 antibodies) highly increases in the week following injury to progressively return to their control level. In parallel, there is an increasing expression of the polysialilated neural cell adhesion molecule by reactive astrocytes. These molecular changes are correlated with a sprouting process of serotoninergic axons in the glial scar, except in a small area in contact with the central region. All these observations suggest that while a part of the glial scar progressively becomes permissive to axon regeneration after mouse spinal cord injury, the border of the glial scar, in contact with the fibronectin-positive tissue matrix, is the real barrier to prevent axon regeneration.


Asunto(s)
Fibras Nerviosas/metabolismo , Regeneración Nerviosa/fisiología , Neuroglía/metabolismo , Serotonina/biosíntesis , Traumatismos de la Médula Espinal/metabolismo , Animales , Femenino , Ratones , Fibras Nerviosas/patología , Molécula L1 de Adhesión de Célula Nerviosa/biosíntesis , Neuroglía/patología , Ácidos Siálicos/biosíntesis , Traumatismos de la Médula Espinal/patología , Vértebras Torácicas/metabolismo , Vértebras Torácicas/patología , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA