Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(9): e0263449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112639

RESUMEN

Sentiment quantification is the task of training, by means of supervised learning, estimators of the relative frequency (also called "prevalence") of sentiment-related classes (such as Positive, Neutral, Negative) in a sample of unlabelled texts. This task is especially important when these texts are tweets, since the final goal of most sentiment classification efforts carried out on Twitter data is actually quantification (and not the classification of individual tweets). It is well-known that solving quantification by means of "classify and count" (i.e., by classifying all unlabelled items by means of a standard classifier and counting the items that have been assigned to a given class) is less than optimal in terms of accuracy, and that more accurate quantification methods exist. Gao and Sebastiani 2016 carried out a systematic comparison of quantification methods on the task of tweet sentiment quantification. In hindsight, we observe that the experimentation carried out in that work was weak, and that the reliability of the conclusions that were drawn from the results is thus questionable. We here re-evaluate those quantification methods (plus a few more modern ones) on exactly the same datasets, this time following a now consolidated and robust experimental protocol (which also involves simulating the presence, in the test data, of class prevalence values very different from those of the training set). This experimental protocol (even without counting the newly added methods) involves a number of experiments 5,775 times larger than that of the original study. Due to the above-mentioned presence, in the test data, of samples characterised by class prevalence values very different from those of the training set, the results of our experiments are dramatically different from those obtained by Gao and Sebastiani, and provide a different, much more solid understanding of the relative strengths and weaknesses of different sentiment quantification methods.


Asunto(s)
Medios de Comunicación Sociales , Actitud , Recolección de Datos , Humanos , Reproducibilidad de los Resultados
2.
Artículo en Inglés | MEDLINE | ID: mdl-31603779

RESUMEN

Image metrics based on Human Visual System (HVS) play a remarkable role in the evaluation of complex image processing algorithms. However, mimicking the HVS is known to be complex and computationally expensive (both in terms of time and memory), and its usage is thus limited to a few applications and to small input data. All of this makes such metrics not fully attractive in real-world scenarios. To address these issues, we propose Deep Image Quality Metric (DIQM), a deep-learning approach to learn the global image quality feature (mean-opinion-score). DIQM can emulate existing visual metrics efficiently, reducing the computational costs by more than an order of magnitude with respect to existing implementations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA