Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(5): 1015-1028.e13, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29056339

RESUMEN

Laboratory mice, while paramount for understanding basic biological phenomena, are limited in modeling complex diseases of humans and other free-living mammals. Because the microbiome is a major factor in mammalian physiology, we aimed to identify a naturally evolved reference microbiome to better recapitulate physiological phenomena relevant in the natural world outside the laboratory. Among 21 distinct mouse populations worldwide, we identified a closely related wild relative to standard laboratory mouse strains. Its bacterial gut microbiome differed significantly from its laboratory mouse counterpart and was transferred to and maintained in laboratory mice over several generations. Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. By demonstrating the host fitness-promoting traits of natural microbiota, our findings should enable the discovery of protective mechanisms relevant in the natural world and improve the modeling of complex diseases of free-living mammals. VIDEO ABSTRACT.


Asunto(s)
Microbioma Gastrointestinal , Ratones/clasificación , Ratones/microbiología , Animales , Animales de Laboratorio , Animales Salvajes , Carcinogénesis/inmunología , Resistencia a la Enfermedad , Femenino , Masculino , Maryland , Ratones/inmunología , Ratones Endogámicos C57BL , Peromyscus , Virosis/inmunología
2.
Curr Genet ; 68(2): 305-318, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35119506

RESUMEN

Cell-cell signaling in microorganisms is still poorly characterized. In this Methods paper, we describe a genetic procedure for detecting cell-nonautonomous genetic effects, and in particular cell-cell signaling, termed the chimeric colony assay (CCA). The CCA measures the effect of a gene on a biological response in a neighboring cell. This assay can measure cell autonomy for range of biological activities including transcript or protein accumulation, subcellular localization, and cell differentiation. To date, the CCA has been used exclusively to investigate colony patterning in the budding yeast Saccharomyces cerevisiae. To demonstrate the wider potential of the assay, we applied this assay to two other systems: the effect of Grr1 on glucose repression of GAL1 transcription in yeast and the effect of rpsL on stop-codon translational readthrough in Escherichia coli. We also describe variations of the standard CCA that address specific aspects of cell-cell signaling, and we delineate essential controls for this assay. Finally, we discuss complementary approaches to the CCA. Taken together, this Methods paper demonstrates how genetic assays can reveal and explore the roles of cell-cell signaling in microbial processes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Codón de Terminación , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Heredity (Edinb) ; 129(3): 183-194, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764696

RESUMEN

House mice (Mus musculus) have spread globally as a result of their commensal relationship with humans. In the form of laboratory strains, both inbred and outbred, they are also among the most widely used model organisms in biomedical research. Although the general outlines of house mouse dispersal and population structure are well known, details have been obscured by either limited sample size or small numbers of markers. Here we examine ancestry, population structure, and inbreeding using SNP microarray genotypes in a cohort of 814 wild mice spanning five continents and all major subspecies of Mus, with a focus on M. m. domesticus. We find that the major axis of genetic variation in M. m. domesticus is a south-to-north gradient within Europe and the Mediterranean. The dominant ancestry component in North America, Australia, New Zealand, and various small offshore islands are of northern European origin. Next we show that inbreeding is surprisingly pervasive and highly variable, even between nearby populations. By inspecting the length distribution of homozygous segments in individual genomes, we find that inbreeding in commensal populations is mostly due to consanguinity. Our results offer new insight into the natural history of an important model organism for medicine and evolutionary biology.


Asunto(s)
Genoma , Endogamia , Animales , Evolución Biológica , Europa (Continente) , Humanos , Ratones , Nueva Zelanda
4.
J Infect Dis ; 224(6): 1077-1085, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-33528566

RESUMEN

BACKGROUND: Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009 to 2017. METHODS: The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative polymerase chain reaction was used to estimate pfpm2 and pfmdr1 copy number. RESULTS: Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being outcompeted by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single-copy pfpm2. CONCLUSIONS: The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.


Asunto(s)
Antimaláricos/farmacología , Biomarcadores/metabolismo , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Membrana/genética , Piperazinas/uso terapéutico , Proteínas Protozoarias/genética , Quinolinas/uso terapéutico , Animales , Antimaláricos/uso terapéutico , Cambodia/epidemiología , Resistencia a Medicamentos/efectos de los fármacos , Malaria Falciparum/epidemiología , Mefloquina/uso terapéutico , Mutación/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Malar J ; 19(1): 47, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992305

RESUMEN

BACKGROUND: Tanzania's Zanzibar archipelago has made significant gains in malaria control over the last decade and is a target for malaria elimination. Despite consistent implementation of effective tools since 2002, elimination has not been achieved. Importation of parasites from outside of the archipelago is thought to be an important cause of malaria's persistence, but this paradigm has not been studied using modern genetic tools. METHODS: Whole-genome sequencing (WGS) was used to investigate the impact of importation, employing population genetic analyses of Plasmodium falciparum isolates from both the archipelago and mainland Tanzania. Ancestry, levels of genetic diversity and differentiation, patterns of relatedness, and patterns of selection between these two populations were assessed by leveraging recent advances in deconvolution of genomes from polyclonal malaria infections. RESULTS: Significant decreases in the effective population sizes were inferred in both populations that coincide with a period of decreasing malaria transmission in Tanzania. Identity by descent analysis showed that parasites in the two populations shared long segments of their genomes, on the order of 5 cM, suggesting shared ancestry within the last 10 generations. Even with limited sampling, two of isolates between the mainland and Zanzibar were identified that are related at the expected level of half-siblings, consistent with recent importation. CONCLUSIONS: These findings suggest that importation plays an important role for malaria incidence on Zanzibar and demonstrate the value of genomic approaches for identifying corridors of parasite movement to the island.


Asunto(s)
Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Estudios de Cohortes , Demografía , Biblioteca de Genes , Variación Genética , Haploidia , Haplotipos , Humanos , Incidencia , Islas/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Mutación , Plasmodium falciparum/clasificación , Tanzanía/epidemiología , Viaje , Secuenciación Completa del Genoma
6.
Mol Biol Evol ; 34(12): 3186-3204, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029271

RESUMEN

Over the 180 My since their origin, the sex chromosomes of mammals have evolved a gene repertoire highly specialized for function in the male germline. The mouse Y chromosome is unique among mammalian Y chromosomes characterized to date in that it is large, gene-rich and euchromatic. Yet, little is known about its diversity in natural populations. Here, we take advantage of published whole-genome sequencing data to survey the diversity of sequence and copy number of sex-linked genes in three subspecies of house mice. Copy number of genes on the repetitive long arm of both sex chromosomes is highly variable, but sequence diversity in nonrepetitive regions is decreased relative to expectations based on autosomes. We use simulations and theory to show that this reduction in sex-linked diversity is incompatible with neutral demographic processes alone, but is consistent with recent positive selection on genes active during spermatogenesis. Our results support the hypothesis that the mouse sex chromosomes are engaged in ongoing intragenomic conflict.


Asunto(s)
Ratones/genética , Cromosoma Y/genética , Animales , Evolución Biológica , Variaciones en el Número de Copia de ADN/genética , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Células Germinativas , Masculino , Cromosomas Sexuales/genética , Espermatogénesis/genética
7.
PLoS Genet ; 11(2): e1004850, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25679959

RESUMEN

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 - 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genómica , Patrón de Herencia/genética , Meiosis/genética , Alelos , Animales , Cromosomas/genética , Cruzamientos Genéticos , Femenino , Técnicas de Genotipaje , Haplotipos/genética , Masculino , Ratones , Mutación
8.
Pediatr Rev ; 44(S1): S9-S13, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37777231
9.
Mol Biol Evol ; 33(6): 1381-95, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26882987

RESUMEN

A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.


Asunto(s)
Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos , Adaptación Fisiológica/genética , Alelos , Animales , Evolución Biológica , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Femenino , Variación Genética , Genética de Población , Masculino , Ratones , Modelos Genéticos , Mutación , Selección Genética
10.
Mamm Genome ; 25(3-4): 95-108, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24487921

RESUMEN

Inflammatory bowel disease (IBD) is an immune-mediated condition driven by improper responses to intestinal microflora in the context of environmental and genetic background. GWAS in humans have identified many loci associated with IBD, but animal models are valuable for dissecting the underlying molecular mechanisms, characterizing environmental and genetic contributions and developing treatments. Mouse models rely on interventions such as chemical treatment or introduction of an infectious agent to induce disease. Here, we describe a new model for IBD in which the disease develops spontaneously in 20-week-old mice in the absence of known murine pathogens. The model is part of the Collaborative Cross and came to our attention due to a high incidence of rectal prolapse in an incompletely inbred line. Necropsies revealed a profound proliferative colitis with variable degrees of ulceration and vasculitis, splenomegaly and enlarged mesenteric lymph nodes with no discernible anomalies of other organ systems. Phenotypic characterization of the CC011/Unc mice with homozygosity ranging from 94.1 to 99.8% suggested that the trait was fixed and acted recessively in crosses to the colitis-resistant C57BL/6J inbred strain. Using a QTL approach, we identified four loci, Ccc1, Ccc2, Ccc3 and Ccc4 on chromosomes 12, 14, 1 and 8 that collectively explain 27.7% of the phenotypic variation. Surprisingly, we also found that minute levels of residual heterozygosity in CC011/Unc have significant impact on the phenotype. This work demonstrates the utility of the CC as a source of models of human disease that arises through new combinations of alleles at susceptibility loci.


Asunto(s)
Cruzamiento/métodos , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/fisiopatología , Ratones Endogámicos/genética , Animales , Mapeo Cromosómico , Cruzamientos Genéticos , Cartilla de ADN/genética , Genotipo , Humanos , Ratones , Ratones Endogámicos C57BL , Linaje , Reacción en Cadena de la Polimerasa , Sitios de Carácter Cuantitativo/genética
11.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854148

RESUMEN

Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.

12.
J Grad Med Educ ; 16(1): 80-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38304590

RESUMEN

Background We started a primary care residency program intended to prepare graduates for primary care and increase entry into primary care, using time-limited funds from the Health Resources and Services Administration (HRSA). Objective To compare the graduates of the primary care residency program to their categorical peers, and whether they remained in the state, began primary care careers, and whether they identified as underrepresented in medicine. Methods This is a retrospective study of a cohort of 39 residents who graduated from the University of North Carolina primary care residency program from 2014-2023. In 2016, HRSA grant funding expired and the program continued with ongoing financial support from the 2 institutions. Graduate demographics and career choices were compared to categorical residents (159 total) for graduate years 2014 to 2023. Results The primary care pediatrics residency has graduated 39 residents to date. Job placement data was obtained for all 39 graduates. Graduates of the program have 5.5-fold greater odds (95% CI, 2.5-12.5) of working in primary care roles following graduation than peer categorical residents. Most graduates (33 of 39, 85%) have taken jobs in general pediatrics (including primary care, urgent care, adolescent medicine, or hospital medicine). The program has recruited a large proportion of its residents (12 of 39, 31%) from groups historically underrepresented in medicine. Conclusions We developed an innovative primary care pediatric residency in collaboration with a community partner, spurred by HRSA funds, that has trained a diverse group of new primary care pediatricians.


Asunto(s)
Internado y Residencia , Humanos , Niño , Adolescente , Estudios Retrospectivos , Medicina Interna/educación , Selección de Profesión , Recursos Humanos , Atención Primaria de Salud
13.
J Thromb Haemost ; 21(10): 2917-2928, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37364776

RESUMEN

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES: We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS: We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS: We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION: Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.


Asunto(s)
Plaquetas , Inhibidor 1 de Activador Plasminogénico , Animales , Ratones , Plaquetas/metabolismo , Fibrinólisis , Genómica , Ratones Endogámicos C57BL , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Sitios de Carácter Cuantitativo , Humanos
14.
Nat Commun ; 12(1): 4169, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234124

RESUMEN

Reports of P. vivax infections among Duffy-negative hosts have accumulated throughout sub-Saharan Africa. Despite this growing body of evidence, no nationally representative epidemiological surveys of P. vivax in sub-Saharan Africa have been performed. To overcome this gap in knowledge, we screened over 17,000 adults in the Democratic Republic of the Congo (DRC) for P. vivax using samples from the 2013-2014 Demographic Health Survey. Overall, we found a 2.97% (95% CI: 2.28%, 3.65%) prevalence of P. vivax infections across the DRC. Infections were associated with few risk-factors and demonstrated a relatively flat distribution of prevalence across space with focal regions of relatively higher prevalence in the north and northeast. Mitochondrial genomes suggested that DRC P. vivax were distinct from circulating non-human ape strains and an ancestral European P. vivax strain, and instead may be part of a separate contemporary clade. Our findings suggest P. vivax is diffusely spread across the DRC at a low prevalence, which may be associated with long-term carriage of low parasitemia, frequent relapses, or a general pool of infections with limited forward propagation.


Asunto(s)
Portador Sano/epidemiología , Malaria Vivax/epidemiología , Parasitemia/epidemiología , Plasmodium vivax/aislamiento & purificación , Adolescente , Adulto , Factores de Edad , Portador Sano/diagnóstico , Portador Sano/parasitología , Estudios Transversales , República Democrática del Congo/epidemiología , Femenino , Humanos , Malaria Vivax/diagnóstico , Malaria Vivax/parasitología , Masculino , Tamizaje Masivo/estadística & datos numéricos , Parasitemia/parasitología , Prevalencia , Factores de Riesgo , Adulto Joven
17.
Nat Commun ; 11(1): 2107, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32355199

RESUMEN

The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known about the spatial and genetic structure of the parasite population in that country. We sequence 2537 Plasmodium falciparum infections, including a nationally representative population sample from DRC and samples from surrounding countries, using molecular inversion probes - a high-throughput genotyping tool. We identify an east-west divide in haplotypes known to confer resistance to chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identify highly related parasites over large geographic distances, indicative of gene flow and migration. Our results are consistent with a background of isolation by distance combined with the effects of selection for antimalarial drug resistance. This study provides a high-resolution view of parasite genetic structure across a large country in Africa and provides a baseline to study how implementation programs may impact parasite populations.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Cloroquina/farmacología , República Democrática del Congo , Combinación de Medicamentos , Genoma de Protozoos , Genotipo , Geografía , Haplotipos , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Mutación , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Pirimetamina/farmacología , Sulfadoxina/farmacología
18.
Genetics ; 212(2): 469-487, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31028113

RESUMEN

Faithful segregation of homologous chromosomes at meiosis requires pairing and recombination. In taxa with dimorphic sex chromosomes, pairing between them in the heterogametic sex is limited to a narrow interval of residual sequence homology known as the pseudoautosomal region (PAR). Failure to form the obligate crossover in the PAR is associated with male infertility in house mice (Mus musculus) and humans. Yet despite this apparent functional constraint, the boundary and organization of the PAR is highly variable in mammals, and even between subspecies of mice. Here, we estimate the genetic map in a previously documented expansion of the PAR in the M. musculus castaneus subspecies and show that the local recombination rate is 100-fold higher than the autosomal background. We identify an independent shift in the PAR boundary in the M. musculus musculus subspecies and show that it involves a complex rearrangement, but still recombines in heterozygous males. Finally, we demonstrate pervasive copy-number variation at the PAR boundary in wild populations of M. m. domesticus, M. m. musculus, and M. m. castaneus Our results suggest that the intensity of recombination activity in the PAR, coupled with relatively weak constraints on its sequence, permit the generation and maintenance of unusual levels of polymorphism in the population of unknown functional significance.


Asunto(s)
Mapeo Cromosómico , Regiones Pseudoautosómicas/genética , Recombinación Genética/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Evolución Molecular , Femenino , Masculino , Meiosis/genética , Ratones , Regiones Pseudoautosómicas/metabolismo , Especificidad de la Especie
19.
PLoS One ; 12(8): e0182882, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837567

RESUMEN

Quantitative trait locus (QTL) analyses of intercross populations between widely used mouse inbred strains provide a powerful approach for uncovering genetic factors that influence susceptibility to atherosclerosis. Epistatic interactions are common in complex phenotypes and depend on genetic backgrounds. To dissect genetic architecture of atherosclerosis, we analyzed F2 progeny from a cross between apolipoprotein E-null mice on DBA/2J (DBA-apoE) and C57BL/6J (B6-apoE) genetic backgrounds and compared the results with those from two previous F2 crosses of apolipoprotein E-null mice on 129S6/SvEvTac (129-apoE) and DBA-apoE backgrounds, and B6-apoE and 129-apoE backgrounds. In these round-robin crosses, in which each parental strain was crossed with two others, large-effect QTLs are expected to be detectable at least in two crosses. On the other hand, observation of QTLs in one cross only may indicate epistasis and/or absence of statistical power. For atherosclerosis at the aortic arch, Aath4 on chromosome (Chr)2:66 cM follows the first pattern, with significant QTL peaks in (DBAx129)F2 and (B6xDBA)F2 mice but not in (B6x129)F2 mice. We conclude that genetic variants unique to DBA/2J at Aath4 confer susceptibility to atherosclerosis at the aortic arch. A similar pattern was observed for Aath5 on chr10:35 cM, verifying that the variants unique to DBA/2J at this locus protect against arch plaque development. However, multiple loci, including Aath1 (Chr1:49 cM), and Aath2 (Chr1:70 cM) follow the second type of pattern, showing significant peaks in only one of the three crosses (B6-apoE x 129-apoE). As for atherosclerosis at aortic root, the majority of QTLs, including Ath29 (Chr9:33 cM), Ath44 (Chr1:68 cM) and Ath45 (Chr2:83 cM), was also inconsistent, being significant in only one of the three crosses. Only the QTL on Chr7:37 cM was consistently suggestive in two of the three crosses. Thus QTL analysis of round-robin crosses revealed the genetic architecture of atherosclerosis.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/genética , Sitios de Carácter Cuantitativo , Animales , Aorta/patología , Aterosclerosis/patología , Mapeo Cromosómico , Cruzamientos Genéticos , Lípidos/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Placa Aterosclerótica/patología
20.
Genetics ; 206(2): 603-619, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28592499

RESUMEN

Meiotic recombination is an essential feature of sexual reproduction that ensures faithful segregation of chromosomes and redistributes genetic variants in populations. Multiparent populations such as the Diversity Outbred (DO) mouse stock accumulate large numbers of crossover (CO) events between founder haplotypes, and thus present a unique opportunity to study the role of genetic variation in shaping the recombination landscape. We obtained high-density genotype data from [Formula: see text] DO mice, and localized 2.2 million CO events to intervals with a median size of 28 kb. The resulting sex-averaged genetic map of the DO population is highly concordant with large-scale (order 10 Mb) features of previously reported genetic maps for mouse. To examine fine-scale (order 10 kb) patterns of recombination in the DO, we overlaid putative recombination hotspots onto our CO intervals. We found that CO intervals are enriched in hotspots compared to the genomic background. However, as many as [Formula: see text] of CO intervals do not overlap any putative hotspots, suggesting that our understanding of hotspots is incomplete. We also identified coldspots encompassing 329 Mb, or [Formula: see text] of observable genome, in which there is little or no recombination. In contrast to hotspots, which are a few kilobases in size, and widely scattered throughout the genome, coldspots have a median size of 2.1 Mb and are spatially clustered. Coldspots are strongly associated with copy-number variant (CNV) regions, especially multi-allelic clusters, identified from whole-genome sequencing of 228 DO mice. Genes in these regions have reduced expression, and epigenetic features of closed chromatin in male germ cells, which suggests that CNVs may repress recombination by altering chromatin structure in meiosis. Our findings demonstrate how multiparent populations, by bridging the gap between large-scale and fine-scale genetic mapping, can reveal new features of the recombination landscape.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Recombinación Homóloga/genética , Meiosis/genética , Recombinación Genética , Animales , Mapeo Cromosómico , Cromosomas/genética , Intercambio Genético , Genoma , Genotipo , Haplotipos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA