Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fitoterapia ; 158: 105141, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35124163

RESUMEN

Proanthocyanidins (PACs) have various bioactivities, such as being anti-bacterial, anti-cancer, and anti-oxidant. Consequently, they have been vigorously studied for the development of new natural bioactive compounds. Recently, PAC was isolated from leaves and pseudostems of the medicinal plant Alpinia zerumbet (Pers.) B.L. Burtt and R.M. Smith, and it had shown in vitro antiviral activity against influenza A H1N1 viruses (IAVs). The 50% endpoint dilution method indicated that 0.1 mg/mL A. zerumbet-derived PAC (AzPAC) reduced the titer of IAVs by >3 logs. The antiviral activity of AzPAC means that it can interact directly with viral particles since the antiviral activity test was done by coincubation of PAC with and IAVs before viral infection. However, few studies have investigated the preventive mechanism utilized by AzPAC on influenza virus replication. In this study, the composition of AzPAC and the affinity between AzPAC and IAVs was investigated in detail. We found that AzPAC was composed of an epicatechin, which was linked by inter-flavan bonds between the C4 and C8 positions (B2-type) and the C4 and C6 positions (B5-type) in the terminal units. A quenching assay indicated that AzPAC interacted with IAV membrane proteins, hemagglutinin and neuraminidase. Additionally, circular dichroism analysis indicated that AzPAC affected the change in the secondary structure rate of the viral membrane proteins. AzPAC was able to impair the infective process of IAVs via direct interaction with their viral membrane proteins. These results indicate that A. zerumbet is a bioresource for the development of preventive drugs against IAV infection.


Asunto(s)
Alpinia , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Proantocianidinas , Alpinia/química , Antivirales/farmacología , Estructura Molecular , Proantocianidinas/farmacología , Replicación Viral
2.
Plant Sci ; 299: 110598, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32900436

RESUMEN

A change of layer arrangement of shoot apical meristem (SAM) organized by three cell layers (L1, L2 and L3) is thought to be one of the provocations of bud sport, which often induces changes in phenotypic colors in periclinal chimeras. This paper describes a cell layer rearrangement which is the cause of spontaneous flower color mutation by using two carnation (Dianthus caryophyllus L.) cultivars that are presumably periclinal chimeras, 'Feminine Minami' (deep pink flower) and its recessive sport 'Tommy Minami' (pinkish red flower). The genotype of the acyl-glucose-dependent anthocyanin 5-glucosyltransferase (AA5GT) which is responsible for the color change of red to pink, in each cell layer was deduced by genomic analysis using tissues originated from specific cell layer and investigation of partial petal color mutations. In the results, the genotype of the L1 of 'Feminine Minami' was heterozygous for functional AA5GT and non-functional AA5GT carrying retrotransposon Ty1dic1 (AA5GT-Ty1dic1), and its inner cell layer hid red flower genotype, whereas AA5GT-Ty1dic1 of the L1 of 'Tommy Minami' became homogenic in absence of the insertion of a new Ty1dic1. Our outcomes concluded that the L1 of 'Tommy Minami' harboring the recessive AA5GT alleles are attributed to the inner cell layer of 'Feminine Minami' possessing red flower genotype.


Asunto(s)
Dianthus/fisiología , Pigmentos Biológicos/fisiología , Retroelementos/genética , Antocianinas , Quimera , Color , Dianthus/enzimología , Dianthus/genética , Flores/genética , Flores/fisiología , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Fitomejoramiento , Células Vegetales/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA