Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 16(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984364

RESUMEN

Freeze Foams are cellular, ceramic structures with hierarchical pore structures that are manufactured using the direct foaming process. By tailoring their morphology and strength, these foam structures are able to cover a wide range of application. Earlier works identified that pore-forming influencing factors (water and air content, suspension temperature, as well as pressure reduction rate) dictate the constitution on a macroscopic and microscopic scale. Therefore, the ability to manufacture foams whose properties align with the component requirements would be an important step in advancing towards a widespread application of these promising materials. With this goal in mind, the correlation between the pore-forming influencing factors and the resulting mechanical properties was quantified. Foams with independently adjustable porosities were produced at the micro and macro scales and evaluated according to their material failure behavior under compressive loads. As a result, foams with determined macroporosities between 38 and 62%, microporosities between 25 and 42%, and compression strengths between 1 and 7 MPa with different material failure characteristics were manufactured and systematically investigated.

2.
Materials (Basel) ; 16(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37241233

RESUMEN

We propose the use of Optical Coherence Tomography (OCT) as a tool for the quality control of 3-D-printed ceramics. Test samples with premeditated defects, namely single- and two-component samples of zirconia, titania, and titanium suboxides, were printed by stereolithography-based DLP (Digital Light Processing) processes. The OCT tomograms obtained on the green samples showed the capability of the method to visualize variations in the layered structure of the samples as well as the presence of cracks and inclusions at depths up to 130 µm, as validated by SEM images. The structural information was visible in cross-sectional images as well as in plan-view images. The optical signal measured from the printed zirconia oxide and titanium oxide samples showed strong attenuation with depth and could be fit with an exponential decay curve. The variations of the decay parameter correlated very well with the presence of defects and material variation. When used as an imaging quantity, the decay parameter projects the position of the defects into 2-D (X,Y) coordinates. This procedure can be used in real time, it reduces the data volume up to 1000 times, and allows for faster subsequent data analysis and transfer. Tomograms were also obtained on sintered samples. The results showed that the method can detect changes in the optical properties of the green ceramics caused by sintering. Specifically, the zirconium oxide samples became more transparent to the light used, whereas the titanium suboxide samples became entirely opaque. In addition, the optical response of the sintered zirconium oxide showed variations within the imaged volume, indicating material density variations. The results presented in this study show that OCT provides sufficient structural information on 3-D-printed ceramics and can be used as an in-line tool for quality control.

3.
Materials (Basel) ; 15(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35160783

RESUMEN

Freeze foaming is a method to manufacture cellular ceramic scaffolds with a hierarchical porous structure. These so-called freeze foams are predestined for the use as bone replacement material because of their internal bone-like structure and biocompatibility. On the one hand, they consist of macrostructural foam cells which are formed by the expansion of gas inside the starting suspension. On the other hand, a porous microstructure inside the foam struts is formed during freezing and subsequent freeze drying of the foamed suspension. The aim of this work is to investigate for the first time the formation of macrostructure and microstructure separately depending on the composition of the suspension and the pressure reduction rate, by means of appropriate characterization methods for the different pore size ranges. Moreover, the foaming behavior itself was characterized by in-situ radiographical and computed tomography (CT) evaluation. As a result, it could be shown that it is possible to tune the macro- and microstructure separately with porosities of 49-74% related to the foam cells and 10-37% inside the struts.

4.
Materials (Basel) ; 14(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064507

RESUMEN

A recently developed multi-ceramic additive manufacturing process (multi-CAMP) and an appropriate device offer a multi-material approach by vat photopolymerization (VPP) of multi-functionalized ceramic components. However, this process is limited to ceramic powders with a certain translucency for visible light. Electrically conductive ceramic powders are therefore ruled out because of their light-absorbing behavior and dark color. The goal of the collaborative work described in the article was to develop a material combination for this multi-material approach of the additive vat photopolymerization method which allows for combining electrical conductivity and electrical insulation plus high mechanical strength in co-sintered ceramic components. As conductive component titanium suboxides are chosen, whereas zirconia forms the mechanically stable and insulation part. Since titanium suboxides cannot be used for vat photopolymerization due to their light-absorbing behavior, titania is used instead. After additive manufacturing, the two-component parts are co-sintered in a reducing atmosphere to transform the titania into its suboxides and, thus, attaining the desired property combination. The article describes the challenges of the co-processing of both materials due to the complex optical properties of titania. Furthermore, the article shows successfully co-sintered testing parts of the material combination of zirconia/titanium suboxide which are made by assembling single-material VPP components in the green state and subsequent common thermal treatment. The results of microstructural and interface investigations such as electrical measurements are discussed.

5.
J Vis Exp ; (143)2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30735164

RESUMEN

An additive manufacturing technology is applied to obtain functionally graded ceramic parts. This technology, based on digital light processing/stereolithography, is developed within the scope of the CerAMfacturing European research project. A three-dimensional (3-D) hemi-maxillary bone-like structure is 3-D printed using custom aluminum oxide polymeric mixtures. The powders and mixtures are fully analyzed in terms of rheological behavior in order to ensure proper material handling during the printing process. The possibility to print functionally graded materials using the Admaflex technology is explained in this document. Field-emission scanning electron microscopy (FESEM) show that the sintered aluminum oxide ceramic part has a porosity lower than 1% and no remainder of the original layered structure is found after analysis.


Asunto(s)
Cerámica/química , Polímeros/química , Impresión Tridimensional/instrumentación , Estereolitografía/instrumentación , Óxido de Aluminio/química , Cerámica/análisis , Porosidad
6.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663650

RESUMEN

To combine the benefits of Additive Manufacturing (AM) with the benefits of Functionally Graded Materials (FGM) to ceramic-based 4D components (three dimensions for the geometry and one degree of freedom concerning the material properties at each position) the Thermoplastic 3D-Printing (CerAM - T3DP) was developed. It is a direct AM technology which allows the AM of multi-material components. To demonstrate the advantages of this technology black-and-white zirconia components were additively manufactured and co-sintered defect-free. Two different pairs of black and white zirconia powders were used to prepare different thermoplastic suspensions. Appropriate dispensing parameters were investigated to manufacture single-material test components and adjusted for the additive manufacturing of multi-color zirconia components.


Asunto(s)
Cerámica/química , Impresión Tridimensional/tendencias , Circonio/química
7.
J Vis Exp ; (143)2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30688295

RESUMEN

Technical ceramics are widely used for industrial and research applications, as well as for consumer goods. Today, the demand for complex geometries with diverse customization options and favorable production methods is increasing continuously. With fused filament fabrication (FFF), it is possible to produce large and complex components quickly with high material efficiency. In FFF, a continuous thermoplastic filament is melted in a heated nozzle and deposited below. The computer-controlled print head is moved in order to build up the desired shape layer by layer. Investigations regarding printing of metals or ceramics are increasing more and more in research and industry. This study focuses on additive manufacturing (AM) with a multi-material approach to combine a metal (stainless steel) with a technical ceramic (zirconia: ZrO2). Combining these materials offers a broad variety of applications due to their different electrical and mechanical properties. The paper shows the main issues in preparation of the material and feedstock, device development, and printing of these composites.


Asunto(s)
Cerámica/química , Metales/química , Impresión Tridimensional , Diseño Asistido por Computadora , Imagenología Tridimensional , Acero Inoxidable/química , Circonio/química
8.
Materials (Basel) ; 11(12)2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30563235

RESUMEN

With a novel Freeze Foaming method, it is possible to manufacture porous cellular components whose structure and composition also enables them for application as artificial bones, among others. To tune the foam properties to our needs, we have to understand the principles of the foaming process and how the relevant process parameters and the foam's structure are linked. Using in situ analysis methods, like X-ray microcomputed tomography (µCT), the foam structure and its development can be observed and correlated to its properties. For this purpose, a device was designed at the Institute of Lightweight Engineering and Polymer Technology (ILK). Due to varying suspension temperature and the rate of pressure decrease it was possible to analyze the foam's developmental stages for the first time. After successfully identifying the mechanism of foam creation and cell structure formation, process routes for tailored foams can be developed in future.

9.
Materials (Basel) ; 10(12)2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29182541

RESUMEN

In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA