Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 63(4): 553-566, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540856

RESUMEN

Emerging evidence suggests that many proteins may be regulated through cysteine modification, but the extent and functions of this signaling remain largely unclear. The endoplasmic reticulum (ER) transmembrane protein IRE-1 maintains ER homeostasis by initiating the unfolded protein response (UPR(ER)). Here we show in C. elegans and human cells that IRE-1 has a distinct redox-regulated function in cytoplasmic homeostasis. Reactive oxygen species (ROS) that are generated at the ER or by mitochondria sulfenylate a cysteine within the IRE-1 kinase activation loop. This inhibits the IRE-1-mediated UPR(ER) and initiates the p38/SKN-1(Nrf2) antioxidant response, thereby increasing stress resistance and lifespan. Many AGC-family kinases (AKT, p70S6K, PKC, ROCK1) seem to be regulated similarly. The data reveal that IRE-1 has an ancient function as a cytoplasmic sentinel that activates p38 and SKN-1(Nrf2) and indicate that cysteine modifications induced by ROS signals can direct proteins to adopt unexpected functions and may coordinate many cellular processes.


Asunto(s)
Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Cisteína/metabolismo , Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Citoplasma/enzimología , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/enzimología , Endorribonucleasas/genética , Células Hep G2 , Humanos , Longevidad , Mitocondrias/enzimología , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Transfección , Respuesta de Proteína Desplegada , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(26): 10587-92, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22645345

RESUMEN

Many age-related diseases are known to elicit protein misfolding and aggregation. Whereas environmental stressors, such as temperature, oxidative stress, and osmotic stress, can also damage proteins, it is not known whether aging and the environment impact protein folding in the same or different ways. Using polyQ reporters of protein folding in both Caenorhabditis elegans and mammalian cell culture, we show that osmotic stress, but not other proteotoxic stressors, induces rapid (minutes) cytoplasmic polyQ aggregation. Osmotic stress-induced polyQ aggregates could be distinguished from aging-induced polyQ aggregates based on morphological, biophysical, cell biological, and biochemical criteria, suggesting that they are a unique misfolded-protein species. The insulin-like growth factor signaling mutant daf-2, which inhibits age-induced polyQ aggregation and protects C. elegans from stress, did not prevent the formation of stress-induced polyQ aggregates. However, osmotic stress resistance mutants, which genetically activate the osmotic stress response, strongly inhibited the formation of osmotic polyQ aggregates. Our findings show that in vivo, the same protein can adopt distinct aggregation states depending on the initiating stressor and that stress and aging impact the proteome in related but distinct ways.


Asunto(s)
Envejecimiento/metabolismo , Péptidos/metabolismo , Estrés Fisiológico , Animales , Ratones , Presión Osmótica , Estrés Oxidativo
3.
Elife ; 62017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28085666

RESUMEN

Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Longevidad , Proteínas de Hierro no Heme/metabolismo , Estrés Oxidativo , Oxidorreductasas/antagonistas & inhibidores , Transducción de Señal , Animales , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Oxidación-Reducción
4.
Elife ; 42015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26196144

RESUMEN

In Caenorhabditis elegans, ablation of germline stem cells (GSCs) extends lifespan, but also increases fat accumulation and alters lipid metabolism, raising the intriguing question of how these effects might be related. Here, we show that a lack of GSCs results in a broad transcriptional reprogramming in which the conserved detoxification regulator SKN-1/Nrf increases stress resistance, proteasome activity, and longevity. SKN-1 also activates diverse lipid metabolism genes and reduces fat storage, thereby alleviating the increased fat accumulation caused by GSC absence. Surprisingly, SKN-1 is activated by signals from this fat, which appears to derive from unconsumed yolk that was produced for reproduction. We conclude that SKN-1 plays a direct role in maintaining lipid homeostasis in which it is activated by lipids. This SKN-1 function may explain the importance of mammalian Nrf proteins in fatty liver disease and suggest that particular endogenous or dietary lipids might promote health through SKN-1/Nrf.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células Germinativas/fisiología , Metabolismo de los Lípidos , Factores de Transcripción/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA