Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Care Med ; 52(5): 764-774, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197736

RESUMEN

OBJECTIVES: Improving the efficiency of clinical trials in acute hypoxemic respiratory failure (HRF) depends on enrichment strategies that minimize enrollment of patients who quickly resolve with existing care and focus on patients at high risk for persistent HRF. We aimed to develop parsimonious models predicting risk of persistent HRF using routine data from ICU admission and select research immune biomarkers. DESIGN: Prospective cohorts for derivation ( n = 630) and external validation ( n = 511). SETTING: Medical and surgical ICUs at two U.S. medical centers. PATIENTS: Adults with acute HRF defined as new invasive mechanical ventilation (IMV) and hypoxemia on the first calendar day after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We evaluated discrimination, calibration, and practical utility of models predicting persistent HRF risk (defined as ongoing IMV and hypoxemia on the third calendar day after admission): 1) a clinical model with least absolute shrinkage and selection operator (LASSO) selecting Pa o2 /F io2 , vasopressors, mean arterial pressure, bicarbonate, and acute respiratory distress syndrome as predictors; 2) a model adding interleukin-6 (IL-6) to clinical predictors; and 3) a comparator model with Pa o2 /F io2 alone, representing an existing strategy for enrichment. Forty-nine percent and 69% of patients had persistent HRF in derivation and validation sets, respectively. In validation, both LASSO (area under the receiver operating characteristic curve, 0.68; 95% CI, 0.64-0.73) and LASSO + IL-6 (0.71; 95% CI, 0.66-0.76) models had better discrimination than Pa o2 /F io2 (0.64; 95% CI, 0.59-0.69). Both models underestimated risk in lower risk deciles, but exhibited better calibration at relevant risk thresholds. Evaluating practical utility, both LASSO and LASSO + IL-6 models exhibited greater net benefit in decision curve analysis, and greater sample size savings in enrichment analysis, compared with Pa o2 /F io2 . The added utility of LASSO + IL-6 model over LASSO was modest. CONCLUSIONS: Parsimonious, interpretable models that predict persistent HRF may improve enrichment of trials testing HRF-targeted therapies and warrant future validation.


Asunto(s)
Interleucina-6 , Insuficiencia Respiratoria , Adulto , Humanos , Estudios Prospectivos , Insuficiencia Respiratoria/terapia , Hipoxia/terapia , Unidades de Cuidados Intensivos
2.
Crit Care Med ; 51(1): e13-e18, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519995

RESUMEN

OBJECTIVES: We sought to determine whether hyperinflammatory acute respiratory distress syndrome (ARDS) and hypoinflammatory ARDS, which have been associated with differences in plasma biomarkers and mortality risk, also display differences in bronchoalveolar lavage (BALF) biomarker profiles. We then described the relationship between hyperinflammatory ARDS and hypoinflammatory ARDS to novel subphenotypes derived using BALF biomarkers. DESIGN: Secondary analysis of a randomized control trial testing omega-3 fatty acids for the treatment of ARDS. SETTING: Five North American intensive care units. PATIENTS: Adults (n = 88) on invasive mechanical ventilation within 48 hours of ARDS onset. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We classified 57 patients as hypoinflammatory and 31 patients as hyperinflammatory using a previously validated logistic regression model. Of 14 BALF biomarkers analyzed, interleukin-6 and granulocyte colony stimulating factor were higher among patients with hyperinflammatory ARDS compared with hypoinflammatory ARDS, though the differences were not robust to multiple hypothesis testing. We then performed a de novo latent class analysis of the 14 BALF biomarkers to identify two classes well separated by alveolar profiles. Class 2 (n = 63) displayed significantly higher interleukin-6, von Willebrand factor, soluble programmed cell death receptor-1, % neutrophils, and other biomarkers of inflammation compared with class 1 (n = 25). These BALF-derived classes had minimal overlap with the plasma-derived hyperinflammatory and hypoinflammatory classes, and the majority of both plasma-derived classes were in BALF-derived class 2 and characterized by high BALF biomarkers. Additionally, the BALF-derived classes were associated with clinical severity of pulmonary disease, with class 2 exhibiting lower Pao2 to Fio2 and distinct ventilatory parameters, unlike the plasma-derived classes, which were only related to nonpulmonary organ dysfunction. CONCLUSIONS: Hyperinflammatory and hypoinflammatory ARDS subphenotypes did not display significant differences in alveolar biologic profiles. Identifying ARDS subgroups using BALF measurements is a unique approach that complements information obtained from plasma, with potential to inform enrichment strategies in trials of lung-targeted therapies.


Asunto(s)
Interleucina-6 , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Síndrome de Dificultad Respiratoria/terapia , Biomarcadores , Líquido del Lavado Bronquioalveolar , Neutrófilos
3.
BMC Pulm Med ; 23(1): 292, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559024

RESUMEN

BACKGROUND: Evolving ARDS epidemiology and management during COVID-19 have prompted calls to reexamine the construct validity of Berlin criteria, which have been rarely evaluated in real-world data. We developed a Berlin ARDS definition (EHR-Berlin) computable in electronic health records (EHR) to (1) assess its construct validity, and (2) assess how expanding its criteria affected validity. METHODS: We performed a retrospective cohort study at two tertiary care hospitals with one EHR, among adults hospitalized with COVID-19 February 2020-March 2021. We assessed five candidate definitions for ARDS: the EHR-Berlin definition modeled on Berlin criteria, and four alternatives informed by recent proposals to expand criteria and include patients on high-flow oxygen (EHR-Alternative 1), relax imaging criteria (EHR-Alternatives 2-3), and extend timing windows (EHR-Alternative 4). We evaluated two aspects of construct validity for the EHR-Berlin definition: (1) criterion validity: agreement with manual ARDS classification by experts, available in 175 patients; (2) predictive validity: relationships with hospital mortality, assessed by Pearson r and by area under the receiver operating curve (AUROC). We assessed predictive validity and timing of identification of EHR-Berlin definition compared to alternative definitions. RESULTS: Among 765 patients, mean (SD) age was 57 (18) years and 471 (62%) were male. The EHR-Berlin definition classified 171 (22%) patients as ARDS, which had high agreement with manual classification (kappa 0.85), and was associated with mortality (Pearson r = 0.39; AUROC 0.72, 95% CI 0.68, 0.77). In comparison, EHR-Alternative 1 classified 219 (29%) patients as ARDS, maintained similar relationships to mortality (r = 0.40; AUROC 0.74, 95% CI 0.70, 0.79, Delong test P = 0.14), and identified patients earlier in their hospitalization (median 13 vs. 15 h from admission, Wilcoxon signed-rank test P < 0.001). EHR-Alternative 3, which removed imaging criteria, had similar correlation (r = 0.41) but better discrimination for mortality (AUROC 0.76, 95% CI 0.72, 0.80; P = 0.036), and identified patients median 2 h (P < 0.001) from admission. CONCLUSIONS: The EHR-Berlin definition can enable ARDS identification with high criterion validity, supporting large-scale study and surveillance. There are opportunities to expand the Berlin criteria that preserve predictive validity and facilitate earlier identification.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Masculino , Adulto , Persona de Mediana Edad , Femenino , Estudios Retrospectivos , Registros Electrónicos de Salud , COVID-19/diagnóstico , Síndrome de Dificultad Respiratoria/diagnóstico , Medición de Riesgo
4.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L14-L26, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35608267

RESUMEN

Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Antígeno B7-H1 , Quimiocinas , Enfermedad Crítica , Humanos , Estudios Prospectivos , SARS-CoV-2 , Factor de Necrosis Tumoral alfa
5.
J Immunol ; 205(4): 892-898, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32651218

RESUMEN

SARS-CoV-2, the virus causing COVID-19, has infected millions and has caused hundreds of thousands of fatalities. Risk factors for critical illness from SARS-CoV-2 infection include male gender, obesity, diabetes, and age >65. The mechanisms underlying the susceptibility to critical illness are poorly understood. Of interest, these comorbidities have previously been associated with increased signaling of Th17 cells. Th17 cells secrete IL-17A and are important for clearing extracellular pathogens, but inappropriate signaling has been linked to acute respiratory distress syndrome. Currently there are few treatment options for SARS-CoV-2 infections. This review describes evidence linking risk factors for critical illness in COVID-19 with increased Th17 cell activation and IL-17 signaling that may lead to increased likelihood for lung injury and respiratory failure. These findings provide a basis for testing the potential use of therapies directed at modulation of Th17 cells and IL-17A signaling in the treatment of COVID-19.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Betacoronavirus/inmunología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Interleucina-17/antagonistas & inhibidores , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Células Th17/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/efectos adversos , COVID-19 , Comorbilidad , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Enfermedad Crítica , Femenino , Humanos , Interleucina-17/metabolismo , Masculino , Pandemias , Neumonía Viral/virología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/mortalidad , Síndrome de Dificultad Respiratoria/virología , Factores de Riesgo , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Células Th17/inmunología , Tratamiento Farmacológico de COVID-19
6.
Crit Care ; 25(1): 336, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526076

RESUMEN

BACKGROUND: Acute hypoxemic respiratory failure (HRF) is associated with high morbidity and mortality, but its heterogeneity challenges the identification of effective therapies. Defining subphenotypes with distinct prognoses or biologic features can improve therapeutic trials, but prior work has focused on ARDS, which excludes many acute HRF patients. We aimed to characterize persistent and resolving subphenotypes in the broader HRF population. METHODS: In this secondary analysis of 2 independent prospective ICU cohorts, we included adults with acute HRF, defined by invasive mechanical ventilation and PaO2-to-FIO2 ratio ≤ 300 on cohort enrollment (n = 768 in the discovery cohort and n = 1715 in the validation cohort). We classified patients as persistent HRF if still requiring mechanical ventilation with PaO2-to-FIO2 ratio ≤ 300 on day 3 following ICU admission, or resolving HRF if otherwise. We estimated relative risk of 28-day hospital mortality associated with persistent HRF, compared to resolving HRF, using generalized linear models. We also estimated fold difference in circulating biomarkers of inflammation and endothelial activation on cohort enrollment among persistent HRF compared to resolving HRF. Finally, we stratified our analyses by ARDS to understand whether this was driving differences between persistent and resolving HRF. RESULTS: Over 50% developed persistent HRF in both the discovery (n = 386) and validation (n = 1032) cohorts. Persistent HRF was associated with higher risk of death relative to resolving HRF in both the discovery (1.68-fold, 95% CI 1.11, 2.54) and validation cohorts (1.93-fold, 95% CI 1.50, 2.47), after adjustment for age, sex, chronic respiratory illness, and acute illness severity on enrollment (APACHE-III in discovery, APACHE-II in validation). Patients with persistent HRF displayed higher biomarkers of inflammation (interleukin-6, interleukin-8) and endothelial dysfunction (angiopoietin-2) than resolving HRF after adjustment. Only half of persistent HRF patients had ARDS, yet exhibited higher mortality and biomarkers than resolving HRF regardless of whether they qualified for ARDS. CONCLUSION: Patients with persistent HRF are common and have higher mortality and elevated circulating markers of lung injury compared to resolving HRF, and yet only a subset are captured by ARDS definitions. Persistent HRF may represent a clinically important, inclusive target for future therapeutic trials in HRF.


Asunto(s)
Mortalidad/tendencias , Fenotipo , Insuficiencia Respiratoria/clasificación , APACHE , Biomarcadores/análisis , Estudios de Cohortes , Femenino , Humanos , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/mortalidad
7.
Crit Care ; 25(1): 148, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33874973

RESUMEN

BACKGROUND: Analyses of blood biomarkers involved in the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection can reveal distinct biological pathways and inform development and testing of therapeutics for COVID-19. Our objective was to evaluate host endothelial, epithelial and inflammatory biomarkers in COVID-19. METHODS: We prospectively enrolled 171 ICU patients, including 78 (46%) patients positive and 93 (54%) negative for SARS-CoV-2 infection from April to September, 2020. We compared 22 plasma biomarkers in blood collected within 24 h and 3 days after ICU admission. RESULTS: In critically ill COVID-19 and non-COVID-19 patients, the most common ICU admission diagnoses were respiratory failure or pneumonia, followed by sepsis and other diagnoses. Similar proportions of patients in both groups received invasive mechanical ventilation at the time of study enrollment. COVID-19 and non-COVID-19 patients had similar rates of acute respiratory distress syndrome, severe acute kidney injury, and in-hospital mortality. While concentrations of interleukin 6 and 8 were not different between groups, markers of epithelial cell injury (soluble receptor for advanced glycation end products, sRAGE) and acute phase proteins (serum amyloid A, SAA) were significantly higher in COVID-19 compared to non-COVID-19, adjusting for demographics and APACHE III scores. In contrast, angiopoietin 2:1 (Ang-2:1 ratio) and soluble tumor necrosis factor receptor 1 (sTNFR-1), markers of endothelial dysfunction and inflammation, were significantly lower in COVID-19 (p < 0.002). Ang-2:1 ratio and SAA were associated with mortality only in non-COVID-19 patients. CONCLUSIONS: These studies demonstrate that, unlike other well-studied causes of critical illness, endothelial dysfunction may not be characteristic of severe COVID-19 early after ICU admission. Pathways resulting in elaboration of acute phase proteins and inducing epithelial cell injury may be promising targets for therapeutics in COVID-19.


Asunto(s)
COVID-19/sangre , Células Endoteliales/virología , Células Epiteliales/virología , Interacciones Microbiota-Huesped , Inflamación/virología , Adulto , Anciano , Biomarcadores/sangre , COVID-19/epidemiología , COVID-19/terapia , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/sangre , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
8.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L825-L832, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936024

RESUMEN

The cellular communication network factor 1 (CCN1) is a matricellular protein that can modulate multiple tissue responses, including inflammation and repair. We have previously shown that adenoviral overexpression of Ccn1 is sufficient to cause acute lung injury in mice. We hypothesized that CCN1 is present in the airspaces of lungs during the acute phase of lung injury, and higher concentrations are associated with acute respiratory distress syndrome (ARDS) severity. We tested this hypothesis by measuring 1) CCN1 in bronchoalveolar lavage fluid (BALF) and lung homogenates from mice subjected to ventilation-induced lung injury (VILI), 2) Ccn1 gene expression and protein levels in MLE-12 cells (alveolar epithelial cell line) subjected to mechanical stretch, and 3) CCN1 in BALF from mechanically ventilated humans with and without ARDS. BALF CCN1 concentrations and whole lung CCN1 protein levels were significantly increased in mice with VILI (n = 6) versus noninjured controls (n = 6). Ccn1 gene expression and CCN1 protein levels were increased in MLE-12 cells cultured under stretch conditions. Subjects with ARDS (n = 77) had higher BALF CCN1 levels compared with mechanically ventilated subjects without ARDS (n = 45) (P < 0.05). In subjects with ARDS, BALF CCN1 concentrations were associated with higher total protein, sRAGE, and worse [Formula: see text]/[Formula: see text] ratios (all P < 0.05). CCN1 is present in the lungs of mice and humans during the acute inflammatory phase of lung injury, and concentrations are higher in patients with increased markers of severity. Alveolar epithelial cells may be an important source of CCN1 under mechanical stretch conditions.


Asunto(s)
Proteína 61 Rica en Cisteína/metabolismo , Respiración Artificial , Síndrome de Dificultad Respiratoria/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Inflamación/metabolismo , Pulmón/metabolismo , Ratones , Respiración Artificial/métodos
9.
Am J Respir Crit Care Med ; 200(6): 732-741, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30990758

RESUMEN

Rationale: Serial measurements of alveolar macrophage (AM) transcriptional changes in patients with acute respiratory distress syndrome (ARDS) could identify cell-specific biological programs that are associated with clinical outcomes.Objectives: To determine whether AM transcriptional programs are associated with prolonged mechanical ventilation and 28-day mortality in individuals with ARDS.Methods: We performed genome-wide transcriptional profiling of AMs purified from BAL fluid collected from 35 subjects with ARDS. Cells were obtained at baseline (Day 1), Day 4, and Day 8 after ARDS onset (N = 68 total samples). We identified biological pathways that were enriched at each time point in subjects alive and extubated within 28 days after ARDS onset (alive/extubatedDay28) versus those dead or persistently supported on mechanical ventilation at Day 28 (dead/intubatedDay28).Measurements and Main Results: "M1-like" (classically activated) and proinflammatory gene sets such as IL-6/JAK/STAT5 (Janus kinase/signal transducer and activator of transcription 5) signaling were significantly enriched in AMs isolated on Day 1 in alive/extubatedDay28 versus dead/intubatedDay28 subjects. In contrast, by Day 8, many of these same proinflammatory gene sets were enriched in AMs collected from dead/intubatedDay28 compared with alive/extubatedDay28 subjects. Serially sampled alive/extubatedDay28 subjects were characterized by an AM temporal expression pattern of Day 1 enrichment of innate immune programs followed by prompt downregulation on Days 4 and 8. Dead/intubatedDay28 subjects exhibited an opposite pattern, characterized by progressive upregulation of proinflammatory programs over the course of ARDS. The relationship between AM expression profiles and 28-day clinical status was distinct in subjects with direct (pulmonary) versus indirect (extrapulmonary) ARDS.Conclusions: Clinical outcomes in ARDS are associated with highly distinct AM transcriptional programs.


Asunto(s)
Inflamación/genética , Macrófagos Alveolares/inmunología , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/mortalidad , Transcripción Genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Respiración Artificial , Síndrome de Dificultad Respiratoria/terapia , Factores de Tiempo
10.
Am J Respir Crit Care Med ; 199(7): 863-872, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30334632

RESUMEN

RATIONALE: Currently, no safe and effective pharmacologic interventions exist for acute kidney injury (AKI). One reason may be that heterogeneity exists within the AKI population, thereby hampering the identification of specific pathophysiologic pathways and therapeutic targets. OBJECTIVE: The aim of this study was to identify and test whether AKI subphenotypes have prognostic and therapeutic implications. METHODS: First, latent class analysis methodology was applied independently in two critically ill populations (discovery [n = 794] and replication [n = 425]) with AKI. Second, a parsimonious classification model was developed to identify AKI subphenotypes. Third, the classification model was applied to patients with AKI in VASST (Vasopressin and Septic Shock Trial; n = 271), and differences in treatment response were determined. In all three populations, AKI was defined using serum creatinine and urine output. MEASUREMENTS AND MAIN RESULTS: A two-subphenotype latent class analysis model had the best fit in both the discovery (P = 0.004) and replication (P = 0.004) AKI groups. The risk of 7-day renal nonrecovery and 28-day mortality was greater with AKI subphenotype 2 (AKI-SP2) relative to AKI subphenotype 1 (AKI-SP1). The AKI subphenotypes discriminated risk for poor clinical outcomes better than the Kidney Disease: Improving Global Outcomes stages of AKI. A three-variable model that included markers of endothelial dysfunction and inflammation accurately determined subphenotype membership (C-statistic 0.92). In VASST, vasopressin compared with norepinephrine was associated with improved 90-day mortality in AKI-SP1 (27% vs. 46%, respectively; P = 0.02), but no significant difference was observed in AKI-SP2 (45% vs. 49%, respectively; P = 0.99) and the P value for interaction was 0.05. CONCLUSIONS: This analysis identified two molecularly distinct AKI subphenotypes with different clinical outcomes and responses to vasopressin therapy. Identification of AKI subphenotypes could improve risk prognostication and may be useful for predictive enrichment in clinical trials.


Asunto(s)
Lesión Renal Aguda/genética , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/terapia , Biomarcadores/sangre , Fenotipo , Vasopresinas/uso terapéutico , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Washingtón
11.
BMC Nephrol ; 21(1): 284, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680471

RESUMEN

BACKGROUND: We previously identified two acute kidney injury (AKI) sub-phenotypes (AKI-SP1 and AKI-SP2) with different risk of poor clinical outcomes and response to vasopressor therapy. Plasma biomarkers of endothelial dysfunction (tumor necrosis factor receptor-1, angiopoietin-1 and 2) differentiated the AKI sub-phenotypes. However, it is unknown whether these biomarkers are simply markers or causal mediators in the development of AKI sub-phenotypes. METHODS: We tested for associations between single-nucleotide polymorphisms within the Angiopoietin-1, Angiopoietin-2, and Tumor Necrosis Factor Receptor 1A genes and AKI- SP2 in 421 critically ill subjects of European ancestry. Top performing single-nucleotide polymorphisms (FDR < 0.05) were tested for cis-biomarker expression and whether genetic risk for AKI-SP2 is mediated through circulating biomarkers. We also completed in vitro studies using human kidney microvascular endothelial cells. Finally, we calculated the renal clearance of plasma biomarkers using 20 different timed urine collections. RESULTS: A genetic variant, rs2920656C > T, near ANGPT2 was associated with reduced risk of AKI-SP2 (odds ratio, 0.45; 95% CI, 0.31-0.66; adjusted FDR = 0.003) and decreased plasma angiopoietin-2 (p = 0.002). Causal inference analysis showed that for each minor allele (T) the risk of developing AKI-SP2 decreases by 16%. Plasma angiopoietin-2 mediated 41.5% of the rs2920656 related risk for AKI-SP2. Human kidney microvascular endothelial cells carrying the T allele of rs2920656 produced numerically lower levels of angiopoietin-2 although this was not statistically significant (p = 0.07). Finally, analyses demonstrated that angiopoietin-2 is minimally renally cleared in critically ill subjects. CONCLUSION: Genetic mediation analysis provides supportive evidence that angiopoietin-2 plays a causal role in risk for AKI-SP2.


Asunto(s)
Lesión Renal Aguda/genética , Angiopoyetina 2/genética , Células Endoteliales/metabolismo , Lesión Renal Aguda/clasificación , Adulto , Anciano , Angiopoyetina 1/genética , Angiopoyetina 2/sangre , Enfermedad Crítica , Femenino , Predisposición Genética a la Enfermedad , Humanos , Técnicas In Vitro , Masculino , Microvasos/citología , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Población Blanca
14.
Am J Respir Cell Mol Biol ; 58(1): 117-125, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28858533

RESUMEN

Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) regulates numerous intracellular signaling pathways involved in inflammation and apoptosis. We hypothesized that genetic variation in MAP3K1 might be associated with outcomes in patients with acute respiratory distress syndrome (ARDS), and that these variants would alter MAP3K1-mediated changes in inflammation and transcriptional regulation. To test this hypothesis, we genotyped single-nucleotide polymorphisms covering linkage disequilibrium bins in MAP3K1 in 306 subjects with ARDS from the ARDSNet FACTT (Fluid and Catheter Treatment Trial) study, and tested for associations between MAP3K1 single-nucleotide polymorphisms and ventilator-free days (VFDs) and mortality. We then validated these associations in a separate cohort of 241 patients with ARDS from Harborview Medical Center (Seattle, WA). We found the variant allele of rs832582 (MAP3K1906Val) was significantly associated with decreased VFDs using multivariate linear regression (-6.1 d, false discovery rate = 0.06) in the FACTT cohort. In the Harborview Medical Center cohort, subjects homozygous for MAP3K1906Val also had decreased VFDs (-15.1 d, false discovery rate < 0.01), and increased 28-day mortality (all subjects homozygous for the rare allele died). In whole blood stimulated with various innate immune agonists ex vivo, MAP3K1906Val was associated with increased IL-1ß, IL-6, IL-8, monocyte chemoattractant protein 1, and TNF-α production. Transcriptome analysis of whole blood stimulated with Toll-like receptor 4 agonist ex vivo demonstrated enrichment of inflammatory gene sets in subjects homozygous for MAP3K1906Val. Our findings show a robust association between the variant allele of rs832582 (MAP3K1906Val) and decreased VFDs in patients with ARDS and suggest that this variant may predispose individuals to a greater inflammatory response.


Asunto(s)
Alelos , Quinasa 1 de Quinasa de Quinasa MAP/genética , Mutación Missense , Polimorfismo de Nucleótido Simple , Síndrome de Dificultad Respiratoria/genética , Adolescente , Adulto , Anciano , Sustitución de Aminoácidos , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Humanos , Quinasa 1 de Quinasa de Quinasa MAP/inmunología , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA