Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Musculoskelet Disord ; 24(1): 624, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528404

RESUMEN

BACKGROUND: Myofascial Pain Syndrome (MPS) is a common pain disorder. Diagnostic criteria include physical findings which are often unreliable or not universally accepted. A precise biosignature may improve diagnosis and treatment effectiveness. The purpose of this study was to assess whether microanalytic assays significantly correlate with characteristic clinical findings in people with MPS. METHODS: This descriptive, prospective study included 38 participants (25 women) with greater than 3 months of myofascial pain in the upper trapezius. Assessments were performed at a university laboratory. The main outcome measures were the Beighton Index, shoulder range of motion, strength asymmetries and microanalytes: DHEA, Kynurenine, VEGF, interleukins (IL-1b, IL-2, IL-4, IL-5, IL-7, IL-8, IL-13), growth factors (IGF-1, IGF2, G-CSF, GM-CSF), MCP-1, MIP-1b, BDNF, Dopamine, Noradrenaline, NPY, and Acetylcholine. Mann-Whitney test and Spearman's multivariate correlation were applied for all variables. The Spearman's analysis results were used to generate a standard correlation matrix and heat map matrix. RESULTS: Mean age of participants was 32 years (20-61). Eight (21%) had widespread pain (Widespread Pain Index ≥ 7). Thirteen (34%) had MPS for 1-3 years, 14 (37%) 3-10 years, and 11 (29%) for > 10 years. The following showed strong correlations: IL1b,2,4,5,7,8; GM-CSF and IL 2,4,5,7; between DHEA and BDNF and between BDNF and Kynurenine, NPY and acetylcholine. The heat map analysis demonstrated strong correlations between the Beighton Index and IL 5,7, GM-CSF, DHEA. Asymmetries of shoulder and cervical spine motion and strength associated with select microanalytes. CONCLUSION: Cytokine levels significantly correlate with selected clinical assessments. This indirectly suggests possible biological relevance for understanding MPS. Correlations among some cytokine clusters; and DHEA, BDNF kynurenine, NPY, and acetylcholine may act together in MPS. These findings should be further investigated for confirmation that link these microanalytes with select clinical findings in people with MPS.


Asunto(s)
Fibromialgia , Síndromes del Dolor Miofascial , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Estudios Prospectivos , Acetilcolina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo , Quinurenina/uso terapéutico , Síndromes del Dolor Miofascial/diagnóstico , Síndromes del Dolor Miofascial/terapia , Citocinas , Dolor , Deshidroepiandrosterona
3.
J Neuroendocrinol ; 35(7): e13278, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37127859

RESUMEN

Sleep disruptions are a common occurrence during the peripartum period. While physical and environmental factors associated with pregnancy and newborn care account for some sleep disruptions, there is evidence that peripartum fluctuations in estrogens may independently impact sleep. However, the impact of these large fluctuations in estrogens on peripartum sleep is unclear because it is difficult to tease apart the effects of estrogens on sleep from effects associated with the growth and development of the fetus or parental care. We therefore used a hormone-simulated pseudopregnancy (HSP) in female Syrian hamsters to test the hypothesis that pregnancy-like increases in estradiol decrease sleep in the absence of other factors. Adult female Syrian hamsters were ovariectomized and given daily hormone injections that simulate estradiol levels during early pregnancy, late pregnancy, and the postpartum period. Home cage video recordings were captured at seven timepoints and videos were analyzed for actigraphy. During "late pregnancy," total sleep time and sleep efficiency were decreased in hormone-treated animals during the white light period compared to pretest levels. Likewise, during "late pregnancy," locomotion was increased in the white light period for hormone-treated animals compared to pretest levels. These changes continued into the "postpartum period" for animals who continued to receive estradiol treatment, but not for animals who were withdrawn from estradiol. At the conclusion of the experiment, animals were euthanized and cFos expression was quantified in the ventral lateral preoptic area (VLPO) and lateral hypothalamus (LH). Animals who continued to receive high levels of estradiol during the "postpartum" period had significantly more cFos in the VLPO and LH than animals who were withdrawn from hormones or vehicle controls. Together, these data suggest that increased levels of estradiol during pregnancy are associated with sleep suppression, which may be mediated by increased activation of hypothalamic nuclei.


Asunto(s)
Estradiol , Seudoembarazo , Cricetinae , Animales , Embarazo , Femenino , Estradiol/farmacología , Mesocricetus , Estrógenos/farmacología , Sueño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA