Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-31618992

RESUMEN

The health benefits of dietary amylase resistant starch (RS) arise from intestinal microbial fermentation and generation of short chain fatty acids (SCFA). We compared the intestinal fermentative capability of stunted and nonstunted ('healthy') children in southern India using two types of RS: high amylose maize starch (HAMS) and acetylated HAMS (HAMSA). Twenty children (10 stunted and 10 healthy) aged 2 to 5 years were fed biscuits containing HAMS (10 g/day) for two weeks followed by a 2-week washout and then HAMSA biscuits (10 g/day) for 2 weeks. Fecal samples were collected at 3-4 day intervals and pH and SCFA analyzed. At entry, stunted children had lower SCFA concentrations compared to healthy children. Both types of RS led to a significant decrease in fecal pH and increase in fecal acetate and propionate in both healthy and stunted children. However, while HAMS increased fecal butyrate in both groups of children, HAMSA increased butyrate in healthy but not stunted children. Furthermore, healthy children showed a significantly greater increase than stunted children in both acetate and butyrate when fed either RS. No adverse effects were reported with either RS. Stunted children have impaired capacity to ferment certain types of RS which has implications for choice of RS in formulations aimed at improving microbial function in stunted children.


Asunto(s)
Carbohidratos de la Dieta , Microbioma Gastrointestinal , Trastornos del Crecimiento/microbiología , Acetilación , Preescolar , Ácidos Grasos Volátiles/análisis , Heces/química , Femenino , Fermentación , Trastornos del Crecimiento/metabolismo , Humanos , India , Masculino , Zea mays
2.
Front Microbiol ; 10: 1459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316490

RESUMEN

In Low and Middle-Income Countries (LMIC), weaning is associated with environmentally acquired and inflammation-associated enteric disorders. Dietary intake of high amylose maize starch (HAMS) can promote commensal fermentative bacteria and drive the production of short chain fatty acids (SCFAs). By stabilizing commensal gut microbiology, and stimulating the production of anti-inflammatory metabolites, HAMS supplementation might therefore influence enteric health. However, the extent to which the gut microbiota of LMIC infants are capable of fermenting HAMS is unclear. We assessed the capacity of the fecal microbiota from pre-weaning and weaning Malawian infants to ferment HAMS and produce SCFAs using an in vitro fermentation model. Fecal microbiota from both pre-weaning and weaning infants were able to ferment HAMS, as indicated by an increase in bacterial load and total SCFA concentration, and a reduction in pH. All of these changes were more substantial in the weaning group. Acetate production was observed with both pre-weaning and weaning groups, while propionate production was only observed in the weaning group. HAMS fermentation resulted in significant alterations to the fecal microbial community in the weaning group, with significant increases in levels of Prevotella, Veillonella, and Collinsella associated with propionate production. In conclusion, fecal microbiota from Malawian infants before and during weaning has the capacity to produce acetate through HAMS fermentation, with propionate biosynthetic capability appearing only at weaning. Our results suggest that HAMS supplementation might provide benefit to infants during weaning.

3.
Nutr Rev ; 75(3): 147-162, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28399577

RESUMEN

Studies on the efficacy of zinc supplementation for treatment or prevention of diarrhea have shown an inconsistent effect in populations at risk for zinc deficiency. Unlike drugs, which have no preexisting presence in the body, endogenous zinc must be assessed pharmacokinetically by isotope tracer studies. Although such methods have produced much data, very few studies have estimated the dose and the timing of dosing of zinc supplementation. This review examines drug kinetics used to establish the best dose, the timing of such doses, and the mechanism of action through pharmacodynamic markers and applies them, where possible, to zinc supplements. The findings reveal that little is known, especially in children at highest risk of zinc deficiency. Key data missing to inform proper dosing, whether for treatment of disease or for preventive nutrient supplementation, are noted. Addressing these uncertainties could improve study design, leading to future studies of zinc supplements that might be of greater benefit.


Asunto(s)
Diarrea/tratamiento farmacológico , Suplementos Dietéticos , Zinc/administración & dosificación , Zinc/deficiencia , Ensayos Clínicos como Asunto , Interacciones Farmacológicas , Interacciones Alimento-Droga , Humanos , Política Nutricional , Factores de Riesgo , Zinc/farmacocinética
4.
Nutrients ; 7(6): 4271-95, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26035248

RESUMEN

It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.


Asunto(s)
Suplementos Dietéticos , Zinc/análisis , Relación Dosis-Respuesta a Droga , Heces/química , Humanos , Isótopos/análisis , Estado Nutricional , Ensayos Clínicos Controlados Aleatorios como Asunto , Zinc/farmacocinética
5.
Am J Clin Nutr ; 100(4): 1198-207, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25240082

RESUMEN

Zinc deficiency is a major cause of childhood morbidity and mortality. The WHO/UNICEF strategy for zinc supplementation as adjunctive therapy for diarrhea is poorly implemented. A conference of experts in zinc nutrition and gastrointestinal disorders was convened to consider approaches that might complement the current recommendation and what research was needed to develop these approaches. Several key points were identified. The design of novel zinc interventions would be facilitated by a better understanding of how disturbed gut function, such as environmental (or tropical) enteropathy, affects zinc absorption, losses, and homeostasis. Because only 10% of zinc stores are able to be rapidly turned over, and appear to be rapidly depleted by acute intestinal illness, they are probably best maintained by complementary regular supplementation in a primary prevention strategy rather than secondary prevention triggered by acute diarrhea. The assessment of zinc status is challenging and complex without simple, validated measures to facilitate field testing of novel interventions. Zinc bioavailability may be a crucial factor in the success of primary prevention strategies, and a range of options, all still inadequately explored, might be valuable in improving zinc nutrition. Some therapeutic actions of zinc on diarrhea seem attributable to pharmacologic effects, whereas others are related to the reversal of deficiency (ie, nutritional). The distinction between these 2 mechanisms cannot be clarified given the insensitivity of serum zinc to identify subclinical deficiency states. Why zinc seems to be less effective than expected at all ages, and ineffective for secondary prevention of diarrhea in children <12 mo of age, remains unclear. It was concluded that a reframing of the current recommendation is warranted with consideration of how to better optimize and deliver zinc and whether to provide a complementary public health primary prevention zinc strategy. This requires careful consideration of the zinc product to be used as well as strategies for its delivery.


Asunto(s)
Diarrea/tratamiento farmacológico , Suplementos Dietéticos , Zinc/administración & dosificación , Zinc/deficiencia , Disponibilidad Biológica , Niño , Preescolar , Femenino , Homeostasis , Humanos , Intestinos/patología , Masculino , Morbilidad , Evaluación Nutricional , Estado Nutricional , Ingesta Diaria Recomendada , Organización Mundial de la Salud , Zinc/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA