Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7976): 1101-1108, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612504

RESUMEN

Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.


Asunto(s)
GTP Fosfohidrolasas , Fusión de Membrana , Mitocondrias , Membranas Mitocondriales , Humanos , Biocatálisis , Cardiolipinas/química , Cardiolipinas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Dinámicas Mitocondriales
2.
Anal Chem ; 94(27): 9750-9757, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35759338

RESUMEN

Although it is thought that there is lateral heterogeneity of lipid and protein components within biological membranes, probing this heterogeneity has proven challenging. The difficulty in such experiments is due to both the small length scale over which such heterogeneity can occur, and the significant perturbation resulting from fluorescent or spin labeling on the delicate interactions within bilayers. Atomic recombination during dynamic nanoscale secondary ion imaging mass spectrometry (NanoSIMS) is a non-perturbative method for examining nanoscale bilayer interactions. Atomic recombination is a variation on conventional NanoSIMS imaging, whereby an isotope on one molecule combines with a different isotope on another molecule during the ionization process, forming an isotopically enriched polyatomic ion in a distance-dependent manner. We show that the recombinant ion, 13C22H-, is formed in high yield from 13C- and 2H-labeled lipids. The low natural abundance of triply labeled acetylide also makes it an ideal ion to probe GM1 clusters in model membranes and the effects of cholesterol on lipid-lipid interactions. We find evidence supporting the cholesterol condensation effect as well as the presence of nanoscale GM1 clusters in model membranes.


Asunto(s)
Membrana Dobles de Lípidos , Espectrometría de Masa de Ion Secundario , Colesterol/metabolismo , Análisis por Conglomerados , Membrana Dobles de Lípidos/química , Recombinación Genética
3.
Proc Natl Acad Sci U S A ; 115(37): 9098-9103, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150407

RESUMEN

Ladderane lipids are unique to anaerobic ammonium-oxidizing (anammox) bacteria and are enriched in the membrane of the anammoxosome, an organelle thought to compartmentalize the anammox process, which involves the toxic intermediate hydrazine (N2H4). Due to the slow growth rate of anammox bacteria and difficulty of isolating pure ladderane lipids, experimental evidence of the biological function of ladderanes is lacking. We have synthesized two natural and one unnatural ladderane phosphatidylcholine lipids and compared their thermotropic properties in self-assembled bilayers to distinguish between [3]- and [5]-ladderane function. We developed a hydrazine transmembrane diffusion assay using a water-soluble derivative of a hydrazine sensor and determined that ladderane membranes are as permeable to hydrazine as straight-chain lipid bilayers. However, pH equilibration across ladderane membranes occurs 5-10 times more slowly than across straight-chain lipid membranes. Langmuir monolayer analysis and the rates of fluorescence recovery after photobleaching suggest that dense ladderane packing may preclude formation of proton/hydroxide-conducting water wires. These data support the hypothesis that ladderanes prevent the breakdown of the proton motive force rather than blocking hydrazine transmembrane diffusion in anammox bacteria.


Asunto(s)
Bacterias/química , Permeabilidad de la Membrana Celular , Membrana Celular/química , Hidrazinas/química , Hidróxidos/química , Fosfolípidos/química , Protones , Anaerobiosis/fisiología , Bacterias/metabolismo , Membrana Celular/metabolismo , Hidrazinas/metabolismo , Hidróxidos/metabolismo , Fosfolípidos/metabolismo
4.
J Am Chem Soc ; 138(51): 16737-16744, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27977192

RESUMEN

The lateral organization of biological membranes is thought to take place on the nanometer length scale. However, this length scale and the dynamic nature of small lipid and protein domains have made characterization of such organization in biological membranes and model systems difficult. Here we introduce a new method for measuring the colocalization of lipids in monolayers and bilayers using stable isotope labeling. We take advantage of a process that occurs in dynamic SIMS called atomic recombination, in which atoms on different molecules combine to form diatomic ions that are detected with a NanoSIMS instrument. This process is highly sensitive to the distance between molecules. By measuring the efficiency of the formation of 13C15N- ions from 13C and 15N atoms on different lipid molecules, we measure variations in the lateral organization of bilayers even though these heterogeneities occur on a length scale of only a few nm, well below the diameter of the primary ion beam of the NanoSIMS instrument or even the best super-resolution fluorescence methods. Using this technique, we provide direct evidence for nanoscale phase separation in a model membrane, which may provide a better model for the organization of biological membranes than lipid mixtures with microscale phase separation. We expect this technique to be broadly applicable to any assembly where very short scale proximity is of interest or unknown, both in chemical and biological systems.


Asunto(s)
Lípidos/química , Nanotecnología , Espectrometría de Masa de Ion Secundario
5.
J Am Chem Soc ; 138(31): 9996-10001, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27447959

RESUMEN

Lipid rafts are widely believed to be an essential organizational motif in cell membranes. However, direct evidence for interactions among lipid and/or protein components believed to be associated with rafts is quite limited owing, in part, to the small size and intrinsically dynamic interactions that lead to raft formation. Here, we exploit the single negative charge on the monosialoganglioside GM1, commonly associated with rafts, to create a gradient of GM1 in response to an electric field applied parallel to a patterned supported lipid bilayer. The composition of this gradient is visualized by imaging mass spectrometry using a NanoSIMS. Using this analytical method, added cholesterol and sphingomyelin, both neutral and not themselves displaced by the electric field, are observed to reorganize with GM1. This dynamic reorganization provides direct evidence for an attractive interaction among these raft components into some sort of cluster. At steady state we obtain an estimate for the composition of this cluster.


Asunto(s)
Gangliósido G(M1)/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Secuencias de Aminoácidos , Membrana Celular/metabolismo , Colesterol/química , Electrodos , Campos Electromagnéticos , Electroforesis , Concentración de Iones de Hidrógeno , Movimiento (Física) , Esfingomielinas/química
6.
J Am Chem Soc ; 138(49): 15845-15848, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960308

RESUMEN

Ladderane lipids produced by anammox bacteria constitute some of the most structurally fascinating yet poorly studied molecules among biological membrane lipids. Slow growth of the producing organism and the inherent difficulty of purifying complex lipid mixtures have prohibited isolation of useful amounts of natural ladderane lipids. We have devised a highly selective total synthesis of ladderane lipid tails and a full phosphatidylcholine to enable biophysical studies on chemically homogeneous samples of these molecules. Additionally, we report the first proof of absolute configuration of a natural ladderane.


Asunto(s)
Fosfolípidos/síntesis química , Conformación Molecular , Fosfolípidos/química
7.
Nat Struct Mol Biol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698206

RESUMEN

TRP ion channels are modulated by phosphoinositide lipids, but the underlying structural mechanisms remain unclear. The capsaicin- and heat-activated receptor, TRPV1, has served as a model for deciphering lipid modulation, which is relevant to understanding how pro-algesic agents enhance channel activity in the setting of inflammatory pain. Identification of a pocket within the TRPV1 transmembrane core has provided initial clues as to how phosphoinositide lipids bind to and regulate the channel. Here we show that this regulatory pocket in rat TRPV1 can accommodate diverse lipid species, including the inflammatory lipid lysophosphatidic acid, whose actions are determined by their specific modes of binding. Furthermore, we show that an empty-pocket channel lacking an endogenous phosphoinositide lipid assumes an agonist-like state, even at low temperature, substantiating the concept that phosphoinositide lipids serve as negative TRPV1 modulators whose ejection from the binding pocket is a critical step toward activation by thermal or chemical stimuli.

8.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826344

RESUMEN

Cardiolipin (CL) is a mitochondria-specific phospholipid that forms heterotypic interactions with membrane-shaping proteins and regulates the dynamic remodeling and function of mitochondria. However, the precise mechanisms through which CL influences mitochondrial morphology are not well understood. In this study, employing molecular dynamics (MD) simulations, we observed CL localize near the membrane-binding sites of the mitochondrial fusion protein Optic Atrophy 1 (OPA1). To validate these findings experimentally, we developed a bromine-labeled CL probe to enhance cryoEM contrast and characterize the structure of OPA1 assemblies bound to the CL-brominated lipid bilayers. Our images provide direct evidence of interactions between CL and two conserved motifs within the paddle domain (PD) of OPA1, which control membrane-shaping mechanisms. We further observed a decrease in membrane remodeling activity for OPA1 in lipid compositions with increasing concentrations of monolyso-cardiolipin (MLCL). Suggesting that the partial replacement of CL by MLCL accumulation, as observed in Barth syndrome-associated mutations of the tafazzin phospholipid transacylase, compromises the stability of protein-membrane interactions. Our analyses provide insights into how biological membranes regulate the mechanisms governing mitochondrial homeostasis.

9.
Mol Biol Cell ; 35(7): mr4, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717434

RESUMEN

Cryogenic electron tomography (cryo-ET) is the highest resolution imaging technique applicable to the life sciences, enabling subnanometer visualization of specimens preserved in their near native states. The rapid plunge freezing process used to prepare samples lends itself to time-resolved studies, which researchers have pursued for in vitro samples for decades. Here, we focus on developing a freezing apparatus for time-resolved studies in situ. The device mixes cellular samples with solution-phase stimulants before spraying them directly onto an electron microscopy grid that is transiting into cryogenic liquid ethane. By varying the flow rates of cell and stimulant solutions within the device, we can control the reaction time from tens of milliseconds to over a second before freezing. In a proof-of-principle demonstration, the freezing method is applied to a model bacterium, Caulobacter crescentus, mixed with an acidic buffer. Through cryo-ET we resolved structural changes throughout the cell, including surface-layer protein dissolution, outer membrane deformation, and cytosolic rearrangement, all within 1.5 s of reaction time. This new approach, Time-Resolved cryo-ET (TR-cryo-ET), enhances the capabilities of cryo-ET by incorporating a subsecond temporal axis and enables the visualization of induced structural changes at the molecular, organelle, or cellular level.


Asunto(s)
Caulobacter crescentus , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Caulobacter crescentus/ultraestructura , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Congelación
10.
Sci Adv ; 10(13): eadk7201, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536910

RESUMEN

Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Cristalografía por Rayos X , Proteínas/química , Catálisis , Conformación Proteica , Hidrolasas
11.
Nat Struct Mol Biol ; 30(2): 167-175, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36624348

RESUMEN

Lipids in biological membranes are thought to be functionally organized, but few experimental tools can probe nanoscale membrane structure. Using brominated lipids as contrast probes for cryo-EM and a model ESCRT-III membrane-remodeling system composed of human CHMP1B and IST1, we observed leaflet-level and protein-localized structural lipid patterns within highly constricted and thinned membrane nanotubes. These nanotubes differed markedly from protein-free, flat bilayers in leaflet thickness, lipid diffusion rates and lipid compositional and conformational asymmetries. Simulations and cryo-EM imaging of brominated stearoyl-docosahexanenoyl-phosphocholine showed how a pair of phenylalanine residues scored the outer leaflet with a helical hydrophobic defect where polyunsaturated docosahexaenoyl tails accumulated at the bilayer surface. Combining cryo-EM of halogenated lipids with molecular dynamics thus enables new characterizations of the composition and structure of membranes on molecular length scales.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Humanos , Membrana Dobles de Lípidos/química , Membrana Celular/química , Conformación Molecular , Membranas
12.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292745

RESUMEN

TRP ion channels are modulated by phosphoinositide lipids, but the underlying structural mechanisms remain unclear. The capsaicin- and heat-activated receptor, TRPV1, has served as a model for deciphering lipid modulation, which is relevant to understanding how pro-algesic agents enhance channel activity in the setting of inflammatory pain. Identification of a pocket within the TRPV1 transmembrane core has provided initial clues as to how phosphoinositide lipids bind to and regulate the channel. Here we show that this regulatory pocket can accommodate diverse lipid species, including the inflammatory lipid lysophosphatidic acid (LPA), whose actions are determined by their specific modes of binding. Furthermore, we show that an 'empty pocket' channel lacking an endogenous phosphoinositide lipid assumes an agonist-like state, even at low temperature, substantiating the concept that phosphoinositide lipids serve as negative TRPV1 modulators whose ejection from the binding pocket is a critical step towards activation by thermal or chemical stimuli.

13.
Nat Commun ; 14(1): 5752, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717031

RESUMEN

Cytochrome c oxidase (CcO) is an essential enzyme in mitochondrial and bacterial respiration. It catalyzes the four-electron reduction of molecular oxygen to water and harnesses the chemical energy to translocate four protons across biological membranes. The turnover of the CcO reaction involves an oxidative phase, in which the reduced enzyme (R) is oxidized to the metastable OH state, and a reductive phase, in which OH is reduced back to the R state. During each phase, two protons are translocated across the membrane. However, if OH is allowed to relax to the resting oxidized state (O), a redox equivalent to OH, its subsequent reduction to R is incapable of driving proton translocation. Here, with resonance Raman spectroscopy and serial femtosecond X-ray crystallography (SFX), we show that the heme a3 iron and CuB in the active site of the O state, like those in the OH state, are coordinated by a hydroxide ion and a water molecule, respectively. However, Y244, critical for the oxygen reduction chemistry, is in the neutral protonated form, which distinguishes O from OH, where Y244 is in the deprotonated tyrosinate form. These structural characteristics of O provide insights into the proton translocation mechanism of CcO.


Asunto(s)
Complejo IV de Transporte de Electrones , Protones , Membrana Celular , Cristalografía por Rayos X , Oxígeno
14.
bioRxiv ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36993562

RESUMEN

Cytochrome c oxidase (CcO) is an essential enzyme in mitochondrial and bacterial respiration. It catalyzes the four-electron reduction of molecular oxygen to water and harnesses the chemical energy to translocate four protons across biological membranes, thereby establishing the proton gradient required for ATP synthesis1. The full turnover of the CcO reaction involves an oxidative phase, in which the reduced enzyme (R) is oxidized by molecular oxygen to the metastable oxidized OH state, and a reductive phase, in which OH is reduced back to the R state. During each of the two phases, two protons are translocated across the membranes2. However, if OH is allowed to relax to the resting oxidized state (O), a redox equivalent to OH, its subsequent reduction to R is incapable of driving proton translocation2,3. How the O state structurally differs from OH remains an enigma in modern bioenergetics. Here, with resonance Raman spectroscopy and serial femtosecond X-ray crystallography (SFX)4, we show that the heme a3 iron and CuB in the active site of the O state, like those in the OH state5,6, are coordinated by a hydroxide ion and a water molecule, respectively. However, Y244, a residue covalently linked to one of the three CuB ligands and critical for the oxygen reduction chemistry, is in the neutral protonated form, which distinguishes O from OH, where Y244 is in the deprotonated tyrosinate form. These structural characteristics of O provide new insights into the proton translocation mechanism of CcO.

15.
Sci Adv ; 9(39): eadj3509, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37756398

RESUMEN

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.


Asunto(s)
Ácidos Nucleicos , ARN , Electrones , Rayos Láser
16.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292849

RESUMEN

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.

17.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645800

RESUMEN

Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.

18.
J Inorg Biochem ; 230: 111768, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202981

RESUMEN

Methyl-Coenzyme M Reductase (MCR) catalyzes the biosynthesis of methane in methanogenic archaea, using a catalytic Ni-centered Cofactor F430 in its active site. It also catalyzes the reverse reaction, that is, the anaerobic activation and oxidation, including the cleavage of the CH bond in methane. Because methanogenesis is the major source of methane on earth, understanding the reaction mechanism of this enzyme can have massive implications in global energy balances. While recent publications have proposed a radical-based catalytic mechanism as well as novel sulfonate-based binding modes of MCR for its native substrates, the structure of the active state of MCR, as well as a complete characterization of the reaction, remain elusive. Previous attempts to structurally characterize the active MCR-Ni(I) state have been unsuccessful due to oxidation of the redox- sensitive catalytic Ni center. Further, while many cryo structures of the inactive Ni(II)-enzyme in various substrates-bound forms have been published, no room temperature structures have been reported, and the structure and mechanism of MCR under physiologically relevant conditions is not known. In this study, we report the first room temperature structure of the MCRred1-silent Ni(II) form using an X-ray Free-Electron Laser (XFEL), with simultaneous X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) data collection. In celebration of the seminal contributions of inorganic chemist Dick Holm to our understanding of nickel-based catalysis, we are honored to announce our findings in this special issue dedicated to this remarkable pioneer of bioinorganic chemistry.


Asunto(s)
Rayos Láser , Metano , Cristalografía por Rayos X , Metano/química , Oxidación-Reducción , Oxidorreductasas , Temperatura
19.
Biochemistry ; 50(21): 4750-6, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21510664

RESUMEN

Methylation of lysine residues in histones has been known to serve a regulatory role in gene expression. Although enzymatic removal of the methyl groups was discovered as early as 1973, the enzymes responsible for their removal were isolated and their mechanism of action was described only recently. The first enzyme to show such activity was LSD1, a flavin-containing enzyme that removes the methyl groups from lysines 4 and 9 of histone 3 with the generation of formaldehyde from the methyl group. This reaction is similar to the previously described demethylation reactions conducted by the enzymes dimethylglycine dehydrogenase and sarcosine dehydrogenase, in which protein-bound tetrahydrofolate serves as an accepter of the formaldehyde that is generated. We now show that nuclear extracts of HeLa cells contain LSD1 that is associated with folate. Using the method of back-scattering interferometry, we have measured the binding of various forms of folate to both full-length LSD1 and a truncated form of LSD1 in free solution. The 6R,S form of the natural pentaglutamate form of tetrahydrofolate bound with the highest affinity (K(d) = 2.8 µM) to full-length LSD1. The fact that folate participates in the enzymatic demethylation of histones provides an opportunity for this micronutrient to play a role in the epigenetic control of gene expression.


Asunto(s)
Ácido Fólico/metabolismo , Histona Demetilasas/metabolismo , Cromatografía en Gel , Células HeLa , Humanos
20.
Chaos ; 21(4): 047509, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22225383

RESUMEN

The dynamics of neurons is characterized by a variety of different spiking patterns in response to external stimuli. One of the most important transitions in neuronal response patterns is the transition from tonic firing to burst discharges, i.e., when the neuronal activity changes from single spikes to the grouping of spikes. An increased number of interspike-interval sequences of specific temporal correlations was detected in anticipation of temperature induced tonic-to-bursting transitions in both, experimental impulse recordings from hypothalamic brain slices and numerical simulations of a stochastic model. Analysis of the modelling data elucidates that the appearance of such patterns can be related to particular system dynamics in the vicinity of the period-doubling bifurcation. It leads to a nonlinear response on de- and hyperpolarizing perturbations introduced by noise. This explains why such particular patterns can be found as reliable precursors of the neurons' transition to burst discharges.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Membrana Celular/fisiología , Hipotálamo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Células Cultivadas , Simulación por Computador , Conductividad Eléctrica , Masculino , Modelos Estadísticos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA