Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686412

RESUMEN

Intra-articular fractures (IAF) result in significant and prolonged inflammation, increasing the chances of developing post-traumatic osteoarthritis (PTOA). Interleukin-one beta (IL-1ß) and Tumor Necrosis Factor-alpha (TNF-α) are key inflammatory factors shown to be involved in osteochondral degradation following IAF. As such, use of targeted biologics such as Infliximab (INX), a TNF-α inhibitor, and Anakinra (ANR), an interleukin-one (IL-1) receptor antagonist (IL1RA), may protect against PTOA by damping the inflammatory response to IAF and reducing osteochondral degradation. To test this hypothesis, IAFs were induced in the hindlimb knee joints of rats treated with INX at 10 mg/kg/day, ANR at 100 g/kg/day, or saline (vehicle control) by subcutaneous infusion for a period of two weeks and healing was evaluated at 8-weeks post injury. Serum and synovial fluid (SF) were analyzed for soluble factors. In-vivo microcomputed tomography (µCT) scans assessed bone mineral density and bone morphometry measurements. Cationic CA4+ agent assessed articular cartilage composition via ex vivo µCT. Scoring according to the Osteoarthritis Research Society International (OARSI) guidelines was performed on stained histologic tibia sections at the 56-day endpoint on a 0-6 scale. Systemically, ANR reduced many pro-inflammatory cytokines and reduced osteochondral degradation markers Cross Linked C-Telopeptide Of Type II (CTXII, p < 0.05) and tartrate-resistant acid phosphatase (TRAP, p < 0.05). ANR treatment resulted in increased chemokines; macrophage-chemotractant protein-1 (MCP-1), MPC-3, macrophage inhibitory protein 2 (MIP2) with a concomitant decrease in proinflammatory interleukin-17A (IL17A) at 14 days post-injury within the SF. Microcomputed tomography (µCT) at 56 days post-injury revealed ANR Treatment decreased epiphyseal degree of anisotropy (DA) (p < 0.05) relative to saline. No differences were found with OARSI scoring but contrast-enhanced µCT revealed a reduction in glycosaminoglycan content with ANR treatment. These findings suggest targeted cytokine inhibition, specifically IL-1 signaling, as a monotherapy has minimal utility for improving IAF healing outcomes but may have utility for promoting a more permissive inflammatory environment that would allow more potent disease modifying osteoarthritis drugs to mitigate the progression of PTOA after IAF.


Asunto(s)
Fracturas Intraarticulares , Osteoartritis , Animales , Ratas , Citocinas , Factor de Necrosis Tumoral alfa , Microtomografía por Rayos X , Osteoartritis/tratamiento farmacológico , Osteoartritis/etiología , Interleucina-1
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834976

RESUMEN

The use of a rehabilitation approach that promotes regeneration has the potential to improve the efficacy of pro-regenerative therapies and maximize functional outcomes in the treatment of volumetric muscle loss (VML). An adjunct antifibrotic treatment could further enhance functional gains by reducing fibrotic scarring. This study aimed to evaluate the potential synergistic effects of losartan, an antifibrotic pharmaceutical, paired with a voluntary wheel running rehabilitation strategy to enhance a minced muscle graft (MMG) pro-regenerative therapy in a rodent model of VML. The animals were randomly assigned into four groups: (1) antifibrotic with rehabilitation, (2) antifibrotic without rehabilitation, (3) vehicle treatment with rehabilitation, and (4) vehicle treatment without rehabilitation. At 56 days, the neuromuscular function was assessed, and muscles were collected for histological and molecular analysis. Surprisingly, we found that the losartan treatment decreased muscle function in MMG-treated VML injuries by 56 days, while the voluntary wheel running elicited no effect. Histologic and molecular analysis revealed that losartan treatment did not reduce fibrosis. These findings suggest that losartan treatment as an adjunct therapy to a regenerative rehabilitation strategy negatively impacts muscular function and fails to promote myogenesis following VML injury. There still remains a clinical need to develop a regenerative rehabilitation treatment strategy for traumatic skeletal muscle injuries. Future studies should consider optimizing the timing and duration of adjunct antifibrotic treatments to maximize functional outcomes in VML injuries.


Asunto(s)
Medicina , Enfermedades Musculares , Animales , Fibrosis , Losartán , Actividad Motora , Músculo Esquelético/patología , Enfermedades Musculares/patología
3.
Microcirculation ; 27(2): e12595, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31584728

RESUMEN

OBJECTIVE: Emerging areas of vascular biology focus on lymphatic/blood vessel mispatterning and the regulation of endothelial cell identity. However, a fundamental question remains unanswered: Can lymphatic vessels become blood vessels in adult tissues? Leveraging a novel tissue culture model, the objective of this study was to track lymphatic endothelial cell fate over the time course of adult microvascular network remodeling. METHODS: Cultured adult Wistar rat mesenteric tissues were labeled with BSI-lectin and time-lapse images were captured over five days of serum-stimulated remodeling. Additionally, rat mesenteric tissues on day 0 and day 3 and 5 post-culture were labeled for PECAM + LYVE-1 or PECAM + podoplanin. RESULTS: Cultured networks were characterized by increases in blood capillary sprouting, lymphatic sprouting, and the number of lymphatic/blood vessel connections. Comparison of images from the same network regions identified incorporation of lymphatic vessels into blood vessels. Mosaic lymphatic/blood vessels contained lymphatic marker positive and negative endothelial cells. CONCLUSIONS: Our results reveal the ability for lymphatic vessels to transition into blood vessels in adult microvascular networks and discover a new paradigm for investigating lymphatic/blood endothelial cell dynamics during microvascular remodeling.


Asunto(s)
Capilares/diagnóstico por imagen , Células Endoteliales/citología , Vasos Linfáticos/diagnóstico por imagen , Modelos Cardiovasculares , Remodelación Vascular , Animales , Capilares/metabolismo , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Ratas , Ratas Wistar
4.
PLoS One ; 17(9): e0274132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36083984

RESUMEN

BACKGROUND: Acute compartment syndrome (ACS) is a devastating complication which develops following a traumatic extremity injury that results in increased pressure within osteofascial compartments, thereby leading to ischemia, muscle and nerve necrosis, and creates a life-threatening condition if left untreated. Fasciotomy is the only available standard surgical intervention for ACS. Following fasciotomy the affected extremity is plagued by prolonged impairments in function. As such, an unmet clinical need exists for adjunct, non-surgical therapies which can facilitate accelerated functional recovery following ACS. Thus, the purpose of this systematic review was to examine the state of the literature for non-surgical interventions that aim to improve muscle contractile functional recovery of the affected limb following ACS. METHODS: English language manuscripts which evaluated non-surgical interventions for ACS, namely those which evaluated the function of the affected extremity, were identified as per PRISMA protocols via searches within three databases from inception to February 2022. Qualitative narrative data synthesis was performed including: study characteristics, type of interventions, quality, and outcomes. Risk of bias (RoB) was assessed using the Systematic Review Centre for Laboratory Animal Experimentation's (SYRCLE) RoB tool and reported level of evidence for each article. RESULTS: Upon review of all initially identified reports, 29 studies were found to be eligible and included. 23 distinct non-surgical interventions were found to facilitate improved muscle contractile function following ACS. Out of 29 studies, 15 studies which evaluated chemical and biological interventions, showed large effect sizes for muscle function improvement. CONCLUSIONS: This systematic review demonstrated that the majority of identified non-surgical interventions facilitated an improvement in muscle contractile function following pathological conditions of ACS.


Asunto(s)
Síndromes Compartimentales , Traumatismos de los Tejidos Blandos , Síndromes Compartimentales/cirugía , Extremidades , Fasciotomía/efectos adversos , Fasciotomía/métodos , Humanos , Recuperación de la Función
5.
Acta Biomater ; 140: 379-388, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843950

RESUMEN

Volumetric muscle loss (VML) was defined as the frank loss of skeletal muscle tissue with associated chronic functional deficits. Significant effort has been dedicated to developing approaches for treating VML injuries, most of which have focused on stimulating regeneration of the affected musculature via a variety of approaches (e.g., biomaterials). VML injury induces a prolonged inflammatory response which causes fibrotic tissue deposition and is thought to inhibit de novo myofiber regeneration despite observed improvements in functional outcomes (i.e., functional fibrosis; FF). Recent approaches have sought to attenuate inflammation and/or fibrosis as a means to create a permissive environment for regenerative therapies. However, there are currently no clinically available interventions capable of facilitating full restoration of form and function following VML injury; thus, an unmet clinical need exists for a near-term interventional strategy to treat affected patients. FF could serve as an alternative approach to facilitate improved functional outcomes following VML injuries. We sought to investigate whether intentionally exploiting the concept of FF (i.e., induction of a supraphysiological fibrotic response via the delivery of a polypropylene mesh combined with TGFß) would enhance the function of the VML affected musculature. We found that FF treatment induces enhanced fibrotic tissue deposition within the VML defect as evidenced by histological and molecular analysis. FF-treated animals exhibit improved in vivo muscle function compared to untreated control animals at 8 weeks post-injury, thus substantiating the concept that FF could serve as an efficacious approach for facilitating improved functional outcomes following VML injury. STATEMENT OF SIGNIFICANCE: VML injuries result in long-term functional impairments and reduced quality of life for affected individuals, namely combat injured US Service members, and no clinical interventions can restore the form and function of the injured limb. Extensive efforts have been aimed at developing therapeutics to address this critical gap; unfortunately, most interventions facilitate only modest regeneration. Interestingly, improved muscle function has been observed in VML studies following treatment with a therapeutic, despite a lack of myogenic tissue formation; a phenomenon termed Functional Fibrosis (FF). Herein we exploited the concept of FF to enhance the function of VML affected musculature. This finding is significant in that the commercially available interventions used to induce FF can be translated into the clinic near-term, thus improving the standard of care for VML injuries.


Asunto(s)
Enfermedades Musculares , Calidad de Vida , Animales , Fibrosis , Humanos , Músculo Esquelético/patología , Enfermedades Musculares/patología , Enfermedades Musculares/terapia , Regeneración
6.
NPJ Regen Med ; 7(1): 59, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243737

RESUMEN

Volumetric muscle loss (VML)-defined as the irrecoverable loss of skeletal muscle tissue with associated persistent functional deficits-is among the most common and highly debilitating combat-related extremity injuries. This is particularly true in cases of severe polytrauma wherein multiple extremities may be involved as a result of high energy wounding mechanisms. As such, significant investment and effort has been made toward developing a clinically viable intervention capable of restoring the form and function of the affected musculature. While these investigations conducted to date have varied with respect to the species, breed, and sex of the chosen pre-clinical in-vivo model system, the majority of these studies have been performed in unilateral injury models, an aspect which may not fully exemplify the clinical representation of the multiply injured patient. Furthermore, while various components of the basal pathophysiology of VML (e.g., fibrosis and inflammation) have been investigated, relatively little effort has focused on how the pathophysiology and efficacy of pro-regenerative technologies is altered when there are multiple VML injuries. Thus, the purpose of this study was two-fold: (1) to investigate if/how the pathophysiology of unilateral VML injuries differs from bilateral VML injuries and (2) to interrogate the effect of bilateral VML injuries on the efficacy of a well-characterized regenerative therapy, minced muscle autograft (MMG). In contrast to our hypothesis, we show that bilateral VML injuries exhibit a similar systemic inflammatory response and improved muscle functional recovery, compared to unilateral injured animals. Furthermore, MMG treatment was found to only be effective at promoting an increase in functional outcomes in unilateral VML injuries. The findings presented herein add to the growing knowledge base of the pathophysiology of VML, and, importantly, reiterate the importance of comprehensively characterizing preclinical models which are utilized for early-stage screening of putative therapies as they can directly influence the translational research pipeline.

7.
J Orthop Res ; 39(6): 1139-1151, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33458856

RESUMEN

Traumatic injuries to the musculoskeletal system are the most prevalent of those suffered by United States Military Service members and accounts for two-thirds of initial hospital costs to the Department of Defense. These combat-related wounds often leave survivors with life-long disability and represent a significant impediment to the readiness of the fighting force. There are immense opportunities for the field of tissue engineering and regenerative medicine (TE/RM) to address these musculoskeletal injuries through regeneration of damaged tissues as a means to restore limb functionality and improve quality of life for affected individuals. Indeed, investigators have made promising advancements in the treatment for these injuries by utilizing small and large preclinical animal models to validate therapeutic efficacy of next-generation TE/RM-based technologies. Importantly, utilization of a comprehensive suite of functional outcome measures, particularly those designed to mimic data collected within the clinical setting, is critical for successful translation and implementation of these therapeutics. To that end, the objective of this review is to emphasize the clinical relevance and application of gait biomechanics as a functional outcome measure for preclinical research studies evaluating the efficacy of TE/RM therapies to treat traumatic musculoskeletal injuries. Specifically, common musculoskeletal injuries sustained by service members-including volumetric muscle loss, post-traumatic osteoarthritis, and composite tissue injuries-are examined as case examples to highlight the use of gait biomechanics as an outcome measure using small and large preclinical animal models.


Asunto(s)
Marcha/fisiología , Sistema Musculoesquelético/lesiones , Evaluación de Resultado en la Atención de Salud , Medicina Regenerativa , Ingeniería de Tejidos , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Humanos , Personal Militar , Osteoartritis/terapia
8.
Adv Biosyst ; 4(10): e2000124, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32914579

RESUMEN

While decellularized adipose tissue (DAT) has potential as an "off-the-shelf" biomaterial product for regenerative medicine, it remains to be determined if donor-source body mass index (BMI) impacts the functionality of DAT. This study set out to comparatively characterize lean versus overweight/obese-donor derived DAT hydrogel based on proteome and to analyze their respective effects on adipose stromal/stem cell (ASC) viability, and differentiation in vitro. Decellularized adipose tissue from lean (lDAT) and overweight/obese (oDAT) donors is produced and characterized. Variability in the fibril microstructures is found, with dense fibrotic fiber clusters and large pore area uniquely present in the oDAT samples. Proteomic analysis reveals that lDAT contains a greater proportion of enriched extracellular proteins and a smaller proportion of enriched intracellular proteins relative to oDAT. Biocompatibility studies show that ASCs cultured in lDAT and oDAT hydrogels remain viable. The adipogenic and osteogenic differentiation capability of ASCs seeded in lDAT and oDAT hydrogels is confirmed by an upregulation in marker gene expression and phenotypic analysis. In conclusion, this study establishes that DAT hydrogels derived from lean and overweight/obese adipose donors present similar physicochemical profiles with some distinctive features while comparably supporting the viability and adipogenic differentiation of ASCs in vitro.


Asunto(s)
Tejido Adiposo , Productos Biológicos , Obesidad/metabolismo , Proteoma , Tejido Adiposo/química , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Hidrogeles/química , Sobrepeso/metabolismo , Proteoma/análisis , Proteoma/química , Proteómica
9.
Geroscience ; 42(2): 515-526, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32206968

RESUMEN

In vitro models of angiogenesis are valuable tools for understanding the underlying mechanisms of pathological conditions and for the preclinical evaluation of therapies. Our laboratory developed the rat mesentery culture model as a new tool for investigating mechanistic cell-cell interactions at specific locations across intact blood and lymphatic microvascular networks ex vivo. The objective of this study was to report a method for evaluating the effect of aging on human stem cell differentiation into pericytes during angiogenesis in cultured microvascular networks. DiI labeled exogenous stem cells were seeded onto harvested adult Wistar rat mesenteric tissues and cultured in alpha-MEM + 1% serum for up to 5 days according to four experimental groups: (1) adult human adipose-derived stem cells (hASCs), (2) aged hASCs, (3) adult human bone marrow-derived stem cells (hBMSCs), and (4) aged hBMSCs. Angiogenesis per experimental group was supported by observation of increased vessel density and capillary sprouting. For each tissue per experimental group, a subset of cells was observed in typical pericyte location wrapped along blood vessels. Stem cell differentiation into pericytes was supported by the adoption of elongated pericyte morphology along endothelial cells and positive NG2 labeling. The percentage of cells in pericyte locations was not significantly different across the experimental groups, suggesting that aged mesenchymal stem cells are able to retain their differentiation capacity. Our results showcase an application of the rat mesentery culture model for aging research and the evaluation of stem cell fate within intact microvascular networks.


Asunto(s)
Envejecimiento , Células Endoteliales , Neovascularización Fisiológica , Células Madre , Animales , Diferenciación Celular , Microvasos , Ratas , Ratas Wistar , Técnicas de Cultivo de Tejidos
10.
Biomolecules ; 10(10)2020 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992554

RESUMEN

Acute and chronic skin wounds due to burns, pressure injuries, and trauma represent a substantial challenge to healthcare delivery with particular impacts on geriatric, paraplegic, and quadriplegic demographics worldwide. Nevertheless, the current standard of care relies extensively on preventive measures to mitigate pressure injury, surgical debridement, skin flap procedures, and negative pressure wound vacuum measures. This article highlights the potential of adipose-, blood-, and cellulose-derived products (cells, decellularized matrices and scaffolds, and exosome and secretome factors) as a means to address this unmet medical need. The current status of this research area is evaluated and discussed in the context of promising avenues for future discovery.


Asunto(s)
Quemaduras/terapia , Exosomas/trasplante , Hidrogeles/uso terapéutico , Cicatrización de Heridas/genética , Quemaduras/patología , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Celulosa/uso terapéutico , Exosomas/genética , Humanos , Hidrogeles/química , Trasplante de Células Madre Mesenquimatosas/tendencias , Células Madre Mesenquimatosas/citología , Piel/crecimiento & desarrollo , Piel/lesiones , Piel/metabolismo
11.
Tissue Eng Part C Methods ; 25(8): 447-458, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31280703

RESUMEN

IMPACT STATEMENT: Microvascular remodeling, or angiogenesis, plays a central role in multiple pathological conditions, including cancer, diabetes, and ischemia. Tissue-engineered in vitro models have emerged as tools to elucidate the mechanisms that drive the angiogenic process. However, a major challenge with model development is recapitulating the physiological complexity of real microvascular networks, including incorporation of the entire vascular tree and hemodynamics. This study establishes a bioreactor system that incorporates real microvascular networks with physiological flow as a novel ex vivo tissue culture model, thereby providing a platform to evaluate angiogenesis in a physiologically relevant environment.


Asunto(s)
Reactores Biológicos , Microvasos/crecimiento & desarrollo , Neovascularización Fisiológica , Animales , Microvasos/citología , Ratas , Ratas Wistar , Técnicas de Cultivo de Tejidos
12.
Stem Cells Int ; 2019: 9276398, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082388

RESUMEN

Hydrogels serve as three-dimensional scaffolds whose composition can be customized to allow attachment and proliferation of several different cell types. Extracellular matrix-derived hydrogels are considered close replicates of the tissue microenvironment. They can serve as scaffolds for in vitro tissue engineering and are a useful tool to study cell-scaffold interaction. The aim of the present study was to analyze the effect of adipose-derived stromal/stem cells (ASCs) and decellularized adipose tissue-derived (DAT) hydrogel interaction on ASC morphology, proliferation, differentiation, and DAT hydrogel microstructure. First, the ASCs were characterized using flow cytometry, adipogenic/osteogenic differentiation, colony-forming unit fibroblast assay and doubling time. The viability and proliferation assays showed that ASCs seeded in DAT hydrogel at different concentrations and cultured for 21 days remained viable and displayed proliferation. ASCs were seeded on DAT hydrogel and cultured in stromal, adipogenic, or osteogenic media for 14 or 28 days. The analysis of adipogenic differentiation demonstrated the upregulation of adipogenic marker genes and accumulation of oil droplets in the cells. Osteogenic differentiation demonstrated the upregulation of osteogenic marker genes and mineral deposition in the DAT hydrogel. The analysis of DAT hydrogel fiber metrics revealed that ASC seeding, and differentiation altered both the diameter and arrangement of fibers in the matrix. Matrix metalloproteinase-2 (MMP-2) activity was assessed to determine the possible mechanism for DAT hydrogel remodeling. MMP-2 activity was observed in all ASC seeded samples, with the osteogenic samples displaying the highest MMP-2 activity. These findings indicate that DAT hydrogel is a cytocompatible scaffold that supports the adipogenic and osteogenic differentiation of ASCs. Furthermore, the attachment of ASCs and differentiation along adipogenic and osteogenic lineages remodels the microstructure of DAT hydrogel.

13.
Sci Rep ; 8(1): 5887, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651134

RESUMEN

A challenge in tissue engineering biomimetic models for studying angiogenesis is building the physiological complexity of real microvascular networks. Our laboratory recently introduced the rat mesentery culture model as an ex vivo experimental platform for investigating multicellular dynamics involved in angiogenesis within intact microvascular networks. The objective of this study was to compare endothelial cell phenotypes along capillary sprouts in cultured ex vivo rat mesentery microvascular networks to in vivo endothelial cell phenotypes. For Day 3 (Ex Vivo) tissues, adult rat mesentery tissues were cultured for three days in media supplemented with 10% serum. For Day 3 (In Vivo) tissues, adult rats were anesthetized and the mesentery was exteriorized for twenty minutes to induce angiogenesis. Microvascular networks from Day 3 (Ex Vivo) and Day 3 (In Vivo) groups were angiogenic, characterized by an increase in vessel density, capillary sprouting, and identification of similar BrdU-positive endothelial cell distributions along sprouts. Endothelial cells in both groups extended pseudopodia at the distal edge of capillary sprouts and displayed similar endothelial cell UNC5b, VEGFR-2, and CD36 labeling patterns. The results from this study support the physiological relevance of the rat mesentery culture model and highlight its novelty as a biomimetic tool for angiogenesis research.


Asunto(s)
Células Endoteliales/citología , Mesenterio/citología , Microvasos/citología , Neovascularización Fisiológica , Técnicas de Cultivo de Tejidos , Andamios del Tejido , Animales , Biomarcadores/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Medios de Cultivo/química , Células Endoteliales/metabolismo , Expresión Génica , Masculino , Mesenterio/irrigación sanguínea , Mesenterio/metabolismo , Microvasos/metabolismo , Fenotipo , Ratas , Ratas Wistar , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
J Tissue Eng Regen Med ; 12(2): e786-e806, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27943597

RESUMEN

Effective re-endothelialization is critical for the use of decellularized scaffolds for ex vivo lung engineering. Current approaches yield insufficiently re-endothelialized scaffolds that haemorrhage and become thrombogenic upon implantation. Herein, gravity-driven seeding coupled with bioreactor culture facilitated widespread distribution and engraftment of endothelial cells throughout rat lung scaffolds. Initially, human umbilical vein endothelial cells were seeded into the pulmonary artery by either gravity-driven, variable flow perfusion seeding or pump-driven, pulsatile flow perfusion seeding. Gravity seeding evenly distributed cells and supported cell survival and re-lining of the vascular walls while perfusion pump-driven seeding led to increased cell fragmentation and death. Using gravity seeding, rat pulmonary artery endothelial cells and rat pulmonary vein endothelial cells attached in intermediate and large vessels, while rat pulmonary microvascular endothelial cells deposited mostly in microvessels. Combination seeding of these cells led to positive vascular endothelial cadherin staining. In addition, combination seeding improved barrier function as assessed by serum albumin extravasation; however, leakage was observed in the distal portions of the re-endothelialized tissue suggesting that recellularization of the alveoli is necessary to complete barrier function of the capillary-alveolar network. Overall, these data indicate that vascular recellularization of rat lung scaffolds is achieved through gravity seeding. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Células Endoteliales/citología , Gravitación , Pulmón/citología , Andamios del Tejido/química , Animales , Apoptosis , Reactores Biológicos , Recuento de Células , Proliferación Celular , Forma de la Célula , Tamaño de la Célula , Supervivencia Celular , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Cinética , Pulmón/irrigación sanguínea , Masculino , Neovascularización Fisiológica , Perfusión , Arteria Pulmonar/citología , Venas Pulmonares/citología , Ratas Sprague-Dawley
15.
J Vis Exp ; (120)2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28287513

RESUMEN

Angiogenesis, defined as the growth of new blood vessels from pre-existing vessels, involves endothelial cells, pericytes, smooth muscle cells, immune cells, and the coordination with lymphatic vessels and nerves. The multi-cell, multi-system interactions necessitate the investigation of angiogenesis in a physiologically relevant environment. Thus, while the use of in vitro cell-culture models have provided mechanistic insights, a common critique is that they do not recapitulate the complexity associated with a microvascular network. The objective of this protocol is to demonstrate the ability to make time-lapse comparisons of intact microvascular networks before and after angiogenesis stimulation in cultured rat mesentery tissues. Cultured tissues contain microvascular networks that maintain their hierarchy. Immunohistochemical labeling confirms the presence of endothelial cells, smooth muscle cells, pericytes, blood vessels and lymphatic vessels. In addition, labeling tissues with BSI-lectin enables time-lapse comparison of local network regions before and after serum or growth factor stimulation characterized by increased capillary sprouting and vessel density. In comparison to common cell culture models, this method provides a tool for endothelial cell lineage studies and tissue specific angiogenic drug evaluation in physiologically relevant microvascular networks.


Asunto(s)
Mesenterio/irrigación sanguínea , Microvasos/fisiología , Neovascularización Fisiológica , Imagen de Lapso de Tiempo , Animales , Capilares , Comunicación Celular , Células Endoteliales/citología , Vasos Linfáticos , Masculino , Neovascularización Fisiológica/fisiología , Pericitos/metabolismo , Ratas , Ratas Wistar
16.
Sci Rep ; 7(1): 2195, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526859

RESUMEN

An emerging challenge in tissue engineering biomimetic models is recapitulating the physiological complexity associated with real tissues. Recently, our laboratory introduced the rat mesentery culture model as an ex vivo experimental platform for investigating the multi-cellular dynamics involved in angiogenesis within an intact microvascular network using time-lapse imaging. A critical question remains whether the vessels maintain their functionality. The objective of this study was to determine whether vascular smooth muscle cells in cultured microvascular networks maintain the ability to constrict. Adult rat mesenteric tissues were harvested and cultured for three days in either MEM or MEM plus 10% serum. On Day 0 and Day 3 live microvascular networks were visualized with FITC conjugated BSI-lectin labeling and arteriole diameters were compared before and five minutes after topical exposure to vasoconstrictors (50 mM KCl and 20 nM Endothelin-1). Arterioles displayed a vasoconstriction response to KCl and endothelin for each experimental group. However, the Day 3 serum cultured networks were angiogenic, characterized by increased vessel density, and displayed a decreased vasoconstriction response compared to Day 0 networks. The results support the physiological relevance of the rat mesentery culture model as a biomimetic tool for investigating microvascular growth and function ex vivo.


Asunto(s)
Arteriolas/citología , Microvasos , Modelos Biológicos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Animales , Masculino , Mesenterio , Neovascularización Fisiológica , Ratas , Imagen de Lapso de Tiempo , Vasoconstricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA