Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080385

RESUMEN

Vitamin D's role in combating the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus causing COVID-19, has been established in unveiling viable inhibitors of COVID-19. The current study investigated the role of pre and pro-vitamin D bioactives from edible mushrooms against Mpro and PLpro proteases of SARS-CoV-2 by computational experiments. The bioactives of mushrooms, specifically ergosterol (provitamin D2), 7-dehydrocholesterol (provitamin-D3), 22,23-dihydroergocalciferol (provitamin-D4), cholecalciferol (vitamin-D3), and ergocalciferol (vitamin D2) were screened against Mpro and PLpro. Molecular docking analyses of the generated bioactive protease complexes unravelled the differential docking energies, which ranged from -7.5 kcal/mol to -4.5 kcal/mol. Ergosterol exhibited the lowest binding energy (-7.5 kcal/mol) against Mpro and PLpro (-5.9 kcal/mol). The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) and MD simulation analyses indicated that the generated complexes were stable, thus affirming the putative binding of the bioactives to viral proteases. Considering the pivotal role of vitamin D bioactives, their direct interactions against SARS-CoV-2 proteases highlight the promising role of bioactives present in mushrooms as potent nutraceuticals against COVID-19.


Asunto(s)
Agaricales , Tratamiento Farmacológico de COVID-19 , Agaricales/metabolismo , Endopeptidasas/metabolismo , Ergosterol , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas/química , Inhibidores de Proteasas/química , Provitaminas , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo , Vitamina D/farmacología
2.
J Biomol Struct Dyn ; 40(4): 1534-1545, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33030102

RESUMEN

SARS-CoV-2 is liable for the worldwide coronavirus disease (COVID-19) exigency. This pandemic created the need for all viable treatment strategies available in the market. In this scenario, computer-aided drug design techniques can be efficiently applied for the quick identification of promising drug repurposing candidates. In the current study, we applied the molecular docking approach in conjugation with molecular dynamics (MD) simulations to find out potential inhibitors against Mpro of SARS-CoV-2 from previously reported SARS-3CL protease inhibitors. Our results showed that N-substituted isatin derivatives and pyrazolone compounds could be used as a potent inhibitor and may possess an anti-viral activity against SARS-CoV-2. However, further experimental investigation and validation of the selected hits are required to find out their suitability for clinical trials. Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Inhibidores de Proteasas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , SARS-CoV-2
3.
Appl Biochem Biotechnol ; 194(4): 1527-1545, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34792750

RESUMEN

The present research article proposes a conservative approach for the Desmodium gangeticum by using small branches instead of roots because the plant has many important chemical constituents that show different medicinal activity, so the plant's consumption is high. We studied here comparative preliminary phytochemical screening test and physicochemical analysis. The successive soxhlet extraction method was used for the successive extraction of roots and small branches with different solvents for comparative chemical profile study by HPLC and GC-MS. It was observed that many peaks in roots and small branches of the plant sample were almost similar, and the retention time of each peak in roots coincided with the retention of small branches of the sample. Therefore, the similarity was observed in roots and small branches of the Desmodium gangeticum plant in HPLC and GC-MS. The results obtained from HPLC analysis show that roots contain 0.00116% and small branches have 0.00026% of caffeic acid in Desmodium gangeticum. The small branches may have almost similar active chemical constituents like roots. In silico molecular docking study revealed that this plant's principal chemical constituents, pterocarpans, could be inhibitors of protein tyrosine phosphate kinase.


Asunto(s)
Fabaceae , Pterocarpanos , Cromatografía Líquida de Alta Presión , Fabaceae/química , Cromatografía de Gases y Espectrometría de Masas , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA